Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172377, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604366

RESUMO

Antineoplastic medications are present in aquatic environments and are measured at relatively high concentrations in hospital sewage effluent. Thus, it is important to characterize risk associated with waterborne exposures to anticancer drugs. The drug 5-fluorouracil (5-FU) is used to treat several types of cancers, acting to inhibit cell division and cellular metabolism. The objectives of this study were to determine the effects of 5-FU on developmental endpoints and lipid composition in zebrafish. 5-FU did not negatively affect development nor survival in developing zebrafish at concentrations up to 1000 µg/L. However, 5-FU increased neutral lipid content in zebrafish larvae, indicating potential for lipid dysregulation. To further discern effects on lipids, lipidomics was conducted and a total of 164 lipids belonging to 14 lipid classes were identified. Significant changes (false discovery rate < 0.05) in abundance were detected for 19 lipids including some ceramides, ether-linked phosphatidylethanolamines, and sphingomyelins among others. We also measured the expression levels of 14 lipid-related enzymes and transporters (e.g., acox3, dgat1, fads2, fasn, elovl2) using real-time PCR; however, mRNA abundance levels were not affected, suggesting transcriptional changes may not be a primary mechanism underlying lipid dysregulation. Locomotor activity was measured in zebrafish as lipids are needed for swimming activity in larvae. Exposure to 5-FU did not affect locomotor activity up to 1000 µg/L. We conclude that lipids accumulate in larval zebrafish with exposure to 5-FU, which can subsequently affect lipid composition. These data reveal potential lipid signatures of 5-FU exposure and contribute to risk assessments for antineoplastic exposure in aquatic environments.


Assuntos
Fluoruracila , Larva , Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Larva/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Antineoplásicos/toxicidade , Lipídeos
2.
Methods Mol Biol ; 2753: 385-396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285353

RESUMO

Pesticides are often used in agriculture and residential areas to mitigate pests and weeds. These chemicals can enter aquatic ecosystems via runoff and rain events, exerting negative effects on aquatic species. In rapidly developing fish embryos, metabolic disruption can alter the developmental trajectory and alter ATP levels. Therefore, it is important to quantify mitochondrial integrity in organisms following exposure to pesticides. To achieve this, a high throughput method to assess pesticide effects on oxidative phosphorylation and mitochondria has been optimized for fish embryos. Fish embryos are first exposed to pesticides for 24 or 48 h, and oxygen consumption rates are measured using the Seahorse XFe24/96 Flux Analyzer (formerly Seahorse Biosciences, now Agilent). The assay utilizes a single embryo and precisely measures oxygen consumption and extracellular acidification. Based upon these measurements, characteristics related to mitochondrial bioenergetics are calculated to provide information on mitochondrial integrity. Using this approach, one can identify pesticides affecting the electron transport chain and ultimately ATP production. In this chapter, we describe the mitochondrial stress test to understand mitochondrial dysfunction and metabolic shifts within the fish embryo.


Assuntos
Praguicidas , Teratogênese , Animais , Teratogênicos/toxicidade , Ecossistema , Praguicidas/toxicidade , Trifosfato de Adenosina
3.
Neurotoxicol Teratol ; 101: 107318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38176600

RESUMO

Buspirone is a pharmaceutical used to treat general anxiety disorder by acting on the dopaminergic and serotoninergic system. Buspirone, like many human pharmaceuticals, has been detected in municipal wastewater; however, the environmental exposure risks are unknown for this psychoactive compound. We studied the effects of buspirone on the behavior of zebrafish, focusing on locomotor and anxiolytic behavior. We also measured transcripts associated with oxidative stress, neurotoxicity, and serotonin signaling to identify potential mechanisms underlying the behavioral changes. Concentrations ranged from environmentally relevant (nM) to physiologically active concentrations typical of human pharmaceuticals (µM). Buspirone treatment did not impact survival, nor did it induce deformities in zebrafish treated for 7 days up to 10 µM. There was a positive relationship between locomotor activity and buspirone concentration in dark periods of the visual motor response test. In the light-dark preference test, both the average time per visit to the dark zone and the percent cumulative duration in the dark zone were increased by 1 µM buspirone. Transcript levels of ache, manf, and mbp were decreased in larvae, while the expression of gap43 was increased following exposure to buspirone, indicating potential neurotoxic effects. There was also reduced expression of serotonin-related genes encoding receptors, transporters, and biosynthesis enzymes (i.e., 5ht1aa, sertb, and tph1a). These data increase understanding of the behavioral and molecular responses in zebrafish following waterborne exposure to neuroactive pharmaceuticals like buspirone.


Assuntos
Transtornos de Ansiedade , Buspirona , Peixe-Zebra , Animais , Humanos , Buspirona/farmacologia , Buspirona/metabolismo , Peixe-Zebra/metabolismo , Serotonina/metabolismo , Larva , Comportamento Animal , Ansiedade/induzido quimicamente , Locomoção , Preparações Farmacêuticas/metabolismo
4.
Environ Toxicol Pharmacol ; 104: 104315, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37984673

RESUMO

"GenX" [ammonium perfluoro (2-methyl-3-oxahexanoate] was developed as a replacement chemical for toxic perfluorinated compounds to be used in product manufacturing. Here, we assessed developmental, mitochondrial, and behavioral toxicity endpoints in zebrafish embryos/larvae exposed to GenX. GenX exerted low toxicity to zebrafish embryos/larvae up to 20 mg/L. GenX did not affect mitochondrial oxidative phosphorylation nor ATP levels. ROS levels were reduced in larvae fish exposed to 10 and 100 µg/L, indicative of an antioxidant defense; however, ROS levels were elevated in fish exposed to 1000 µg/L. Increased expression of cox1 and sod2 in GenX exposed 7-day larvae was noted. GenX (0.1 or 1 µg/L) altered transcripts associated with neurotoxicity (elavl3, gfap, gap43, manf, and tubb). Locomotor activity of larvae was reduced by 100 µg/L GenX, but only in light periods. Perturbations of anxiety-related behaviors in larvae were not observed with GenX exposure. These data inform risk assessments for long-lived perfluorinated chemicals of concern.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Larva , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Compostos de Amônio/toxicidade , Compostos de Amônio/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37813296

RESUMO

Fipronil is a broad-spectrum pesticide presenting high acute toxicity to non-target organisms, particularly to aquatic species. Natural compounds stand out as promising alternatives to the use of synthetic pesticides such as fipronil. Thus, our study aimed to compare the toxicity of carvacrol (natural), acetylcarvacrol (semisynthetic), and fipronil (synthetic) to early staged zebrafish. We conducted a series of toxicity assays at concentrations ranging from 0.01 µM to 25 µM for fipronil and 0.01 µM to 200 µM for carvacrol and acetylcarvacrol, depending on the assay, after 7-days post-fertilization (dpf). The potency (EC50) of fipronil was ∼1 µM for both deformities and mortality at 7 dpf, whereas EC50 was >50 µM for carvacrol and >70 µM for acetylcarvacrol. Fipronil at 0.1 and 1 µM caused a decrease in body length and swim bladder area of larvae at 7dpf, but no difference was observed for either carvacrol or acetylcarvacrol. Based upon the visual motor response test, fipronil induced hypoactivity in larval zebrafish at 1 µM and acetylcarvacrol induced hyperactivity at 0.1 µM. Anxiolytic-type behaviors were not affected by any of these chemicals. All chemicals increased the production of reactive oxygen species at 7 dpf, but not at 2 dpf. Genes related to swim bladder inflation, oxidative stress, lipid metabolism, and mitochondrial activity were measured; only fipronil induced upregulation of atp5f1c. There were no changes were observed in oxygen consumption rates of fish and apoptosis. Taken together, our data suggest that carvacrol and its derivative may be safer replacements for fipronil due to their lower acute toxicity.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Pirazóis/toxicidade , Pirazóis/metabolismo , Larva , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
6.
Data Brief ; 50: 109534, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37727589

RESUMO

Broflanilide is a novel pesticide that can antagonize ion channels and disrupt neurotransmitter systems in the brain. Zebrafish larvae were exposed to either 0, 1 or 10- µg/L broflanilide in the water for a period of 7 days during early development. RNA extraction was conducted on larval zebrafish for RNA-seq analysis using the Illumina NovoSeq 6000. Raw sequence data were processed through fastp and clean reads obtained by removing adapter and poly-N sequences. Alignment and differential gene expression analysis was conducted using HISAT2, StringTie assembler, and FPKM (Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced). Subnetwork enrichment analysis (SNEA) revealed that exposure to 1 µg/L broflanilide altered gene networks associated with axonal injury, depression, neuroinflammation, and traumatic brain injury while exposure to 10- µg/L broflanilide resulted in changes in gene networks associated with brain infarction and ischemia, excitotoxicity, and neurogenic inflammation. In addition, genes related to MPTP-induced neurotoxicity were altered by broflanilide which has relevance for Parkinson's disease. Several transcripts were identified as being associated with a disease network link to neurodegeneration and included phospholipase A2 activating protein, calpain 1, ATPase Na+/K+ transporting subunit alpha 2, glia maturation factor beta, sphingomyelin phosphodiesterase 1, leucine rich repeat kinase 2, glutamate ionotropic receptor NMDA type subunit 2C, lysosomal associated membrane protein, and calcium/calmodulin dependent protein kinase II alpha among others. Data presented here include disease biomarkers for a novel pesticide and can be reused to refine models that describe adverse outcome pathways for neurotoxicity.

7.
Sci Total Environ ; 904: 167072, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714344

RESUMO

Broflanilide is a novel insecticide that is classified as a non-competitive γ-aminobutyric acid (GABA) receptor antagonist. However, indiscriminate use can have negative effects on non-target species. The objective of this study was to determine the sub-lethal toxicity potential of broflanilide in early staged zebrafish. Embryos/larvae were assessed for multiple molecular and morphological endpoints following exposure to a range of concentrations of broflanilide. The insecticide did not affect hatch rate, the frequency of deformities, nor did it impact survival of zebrafish at exposure concentrations up to 500 µg/L over a 7-day period from hatch. There was also no effect on oxidative consumption rates in embryos, nor induction of reactive oxygen species in fish exposed up to 100 µg/L broflanilide. As oxidative stress was not prominent as a mechanism, we turned to RNA-seq to identify potential toxicity pathways. Gene networks related to neurotransmitter release and ion channels were altered in zebrafish, consistent with its mechanism of action of modulating GABA receptors, which regulate chloride channels. Noteworthy was that genes related to the circadian clock were induced by 1 µg/L broflanilide exposure. The locomotor activity of larval fish at 7 days was increased (i.e., hyperactivity) by broflanilide exposure based on a visual motor response test, corroborating expression data indicating neurotoxicity and motor dysfunction. This study improves the current understanding of the biological responses in fish to broflanilide exposure and contributes to risk assessment strategies for this novel pesticide.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Inseticidas/metabolismo , Peixe-Zebra/metabolismo , Redes Reguladoras de Genes , Larva , Canais Iônicos/metabolismo , Canais Iônicos/farmacologia , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero
8.
Reproduction ; 166(2): 135-147, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37252841

RESUMO

In brief: Evaluation of sperm samples with similar motility after thawing has limited value to identify differences in sperm bioenergetic capacity. Maintaining sperm for 24 hr at room temperature is sufficient to detect bioenergetic and kinematics divergences. Abstract: Sperm transport through the female reproductive tract requires energy for motility and fertilization. Sperm kinematic assessment is conducted as an industry standard to estimate semen quality prior to bovine insemination. However, individual samples with similar post-thaw motility result in different pregnancy outcomes, suggesting that differences in bioenergetics may be important for sperm function. Thus, characterization of bioenergetic and kinematic parameters of sperm over time may reveal novel metabolic requirements for sperm function. Post-thawed sperm from five samples of individual (A, B, C) and pooled bulls (AB, AC) were assessed at 0 and 24 h after thawing. Sperm were evaluated for kinematics via computer-assisted sperm analyses and bioenergetic profiles using a Seahorse Analyzer for basal respiration (BR), mitochondrial stress test (MST), and energy map (EM). Motility was nearly identical among samples after thawing and no differences in bioenergetics were detected. However, after 24 h of sperm storage, pooled sperm samples (AC) presented with higher BR and proton leakage compared to other samples. Sperm kinematic variability among samples was higher after 24 h, suggesting difference in sperm quality may manifest over time. Despite a reduction in motility and mitochondrial membrane potential, BR was higher at 24 h compared to 0 h for nearly all samples. A metabolic divergence between samples was detected by EM, indicating a shift in bioenergetic profiles over time that was undetected after thawing. These new bioenergetic profiles elucidate a novel dynamic plasticity of sperm metabolism over time while suggesting an influence of heterospermic interactions for further investigation.


Assuntos
Análise do Sêmen , Preservação do Sêmen , Gravidez , Masculino , Animais , Bovinos , Feminino , Análise do Sêmen/veterinária , Sêmen , Fenômenos Biomecânicos , Preservação do Sêmen/veterinária , Criopreservação/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Metabolismo Energético
9.
Neurotoxicol Teratol ; 98: 107183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37211288

RESUMO

Zebrafish are frequently used as a vertebrate model to elucidate toxicological and pharmacological mechanisms of action in the central nervous system. Pharmacological studies demonstrate that dopamine, signaling via several receptor subtypes, regulates zebrafish larval behavior. Quinpirole is a selective dopamine receptor agonist for D2 and D3 subtypes while ropinirole exhibits selectivity toward D2, D3, and D4 receptors. The main objective of this study was to determine the short-term actions of quinpirole and ropinirole on the locomotor activity and anxiolytic/anti-anxiolytic behaviors of zebrafish. Furthermore, dopamine signaling can cross talk with other neurotransmitter systems, including the GABAergic and glutamatergic system. As such, we measured transcriptional responses in these systems to determine whether dopamine receptor activation modulated GABAergic and glutaminergic systems. Ropinirole reduced locomotor activity of larval fish at concentrations of 1 µM and greater but quinpirole did not affect locomotor activity at all concentrations tested. Anxiolytic-related behaviors were also compared between the two pharmaceuticals. Noteworthy was that both dopamine receptor agonists at 1 µM increased the activity of zebrafish in the light phase of a light-dark preference test, which may be related to the activation of D2 and/or D3 receptors. In terms of interactions with other neurotransmitter systems, ropinirole up-regulated transcripts in larvae zebrafish related to both the GABAergic and glutamatergic systems (abat, gabra1, gabrb1, gad1b, gabra5, gabrg3, and grin1b). Conversely, quinpirole did not alter the abundance of any transcript measured, suggesting that dopamine-GABA interaction may involve D4-receptors, which has been noted in mammalian models. This study demonstrates pleiotropic actions of dopamine agonism on the GABA and glutamate system in larval zebrafish. This study has relevance for characterizing toxicants that act via dopamine receptors and for elucidating mechanisms of neurological disorders that involve motor circuits and multiple neurotransmitter systems, like Parkinson's disease.


Assuntos
Ansiolíticos , Agonistas de Dopamina , Animais , Agonistas de Dopamina/farmacologia , Quimpirol/farmacologia , Peixe-Zebra , Dopamina , Ácido Glutâmico , Larva , Receptores de Dopamina D2 , Ácido gama-Aminobutírico , Mamíferos
10.
Toxics ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36851053

RESUMO

Sulfamethoxazole (SMX) is a broad-range bacteriostatic antibiotic widely used in animal and fish farming and is also employed in human medicine. These antibiotics can ultimately end up in the aquatic ecosystem and affect non-target organisms such as fish. To discern the effect of SMX on developing zebrafish embryos and larvae, we investigated a broad range of sub-lethal toxicity endpoints. Higher concentrations of SMX affected survivability, caused hatch delay, and induced malformations including edema of the yolk sac, pericardial effusion, bent tail, and curved spine in developing embryos. Lower levels of SMX provoked an inflammatory response in larvae at seven days post fertilization (dpf), as noted by up-regulation of interferon (ifn-γ) and interleukin 1ß (il-1ß). SMX also increased the expression of genes related to apoptosis, including BCL2-Associated Agonist of Cell Death (bad) and BCL2 Associated X, Apoptosis Regulator (bax) at 50 µg/L and decreased caspase 3 (casp3) expression in a dose-dependent manner. SMX induced hyperactivity in larval fish at 500 and 2500 µg/L based upon the light/dark preference test. Collectively, this study revealed that exposure to SMX can disrupt the immune system by altering host defense mechanisms as well as transcripts related to apoptosis. These data improve understanding of antibiotic chemical toxicity in aquatic organisms and serves as a baseline for in-depth environmental risk assessment of SMX and antibiotics.

11.
Biomolecules ; 13(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36830627

RESUMO

Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory and pro-hypertensive cytokine. While butyrate and TNFα are both linked with hypertension, studies have not yet addressed their interaction in the colon. Here, we investigated the capacity of butyrate to modulate a host of effects of TNFα in primary rodent colonic cells in vitro. We measured ATP levels, cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial oxidative phosphorylation, and glycolytic activity in colonocytes following exposure to either butyrate or TNFα, or both. To address the potential mechanisms, transcripts related to oxidative stress, cell fate, and cell metabolism (Pdk1, Pdk2, Pdk4, Spr, Slc16a1, Slc16a3, Ppargc1a, Cs, Lgr5, Casp3, Tnfr2, Bax, Bcl2, Sod1, Sod2, and Cat) were measured, and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the metabolic responses of colonocytes following exposure to butyrate and TNFα. We found that both butyrate and TNFα lowered cellular ATP levels towards a quiescent cell energy phenotype, characterized by decreased oxygen consumption and extracellular acidification. Co-treatment with butyrate ameliorated TNFα-induced cytotoxicity and the reduction in cell viability. Butyrate also opposed the TNFα-mediated decrease in MMP and mitochondrial-to-intracellular calcium ratios, suggesting that butyrate may protect colonocytes against TNFα-induced cytotoxicity by decreasing mitochondrial calcium flux. The relative expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were increased via co-treatment of butyrate and TNFα, suggesting the synergistic inhibition of glycolysis. TNFα alone reduced the expression of monocarboxylate transporters slc16a1 and slc16a3, suggesting effects of TNFα on butyrate uptake into colonocytes. Of the 185 metabolites that were detected with LC-MS, the TNFα-induced increase in biopterin produced the only significant change, suggesting an alteration in mitochondrial biogenesis in colonocytes. Considering the reports of elevated colonic TNFα and reduced butyrate metabolism in many conditions, including in hypertension, the present work sheds light on cellular interactions between TNFα and butyrate in colonocytes that may be important in understanding conditions of the colon.


Assuntos
Butiratos , Hipertensão , Ratos , Animais , Butiratos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cálcio/metabolismo , Cromatografia Líquida , Mucosa Intestinal/metabolismo , Espectrometria de Massas em Tandem , Hipertensão/metabolismo , Trifosfato de Adenosina/metabolismo
12.
Environ Toxicol Pharmacol ; 98: 104084, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36828158

RESUMO

Tiafenacil is a newly registered herbicide and a protoporphyrinogen IX oxidase inhibitor. However, sub-lethal effects of PPO-inhibitors in aquatic species are unknown. Embryos or larvae were exposed to 0.1 µg/L up to 10 mg/L tiafenacil for 7-days post-fertilization. Decreased survival (> 50%) and deformities were noted at concentrations > 1 mg/L. Potency (EC50) of tiafenacil for 5- and 7-day larvae were 818.1 µg/L and 821.7 µg/L, respectively. Pericardial and yolk sac edema were the most frequent deformities observed. Heartbeat frequency at 3 dpf was decreased in zebrafish exposed to > 10 µg/L tiafenacil, coinciding with increased reactive oxygen species. Oxygen consumption rates were not affected by tiafenacil, nor did we detect differences in indicators of apoptosis. The abundance of eighteen transcripts related to oxidative stress and mitochondrial complexes I through V were unchanged. Larval activity was decreased with exposure to 1000 µg/L tiafenacil. These data contribute to risk assessment for a new class of herbicide.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Larva , Saco Vitelino , Estresse Oxidativo , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
13.
Sci Total Environ ; 866: 161272, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36587689

RESUMO

Blood pressure medications are used to treat hypertension; however, low concentrations of beta-blockers in water systems can negatively impact aquatic wildlife. Here, we conducted a metabolic and behavioral study investigating atenolol, a beta-blocker frequently detected in global wastewater systems. The objectives were to determine the effects of low-level atenolol exposure on early stages of zebrafish. We measured survival, deformities, heartbeat, mitochondrial function, lipid and amino acid profiles, and locomotor activity to discern mechanisms of metabolic disruption. We hypothesized that atenolol disrupts lipid metabolism, which would negatively impact locomotor activity. Atenolol showed no overt toxicity to larval zebrafish up to 10 µg/L and deformities were infrequent (<5 %), and included cardiac edema and larvae with kinked tails. A hatch delay was observed at 2-day post-fertilization (dpf) for fish exposed to >5 µg/L atenolol. Heart rates were reduced in 2 and 3 dpf in fish treated with >500 ng/L atenolol. There was no change in oxygen consumption rates (basal and maximum respiration) of embryos when exposed to a range of atenolol concentrations, suggesting mitochondrial respiration was intact. Oil red staining for lipid content in larvae showed a global reduction in lipids with 10 µg/L exposure, prompting deeper investigation into the lipid profiles. Lipidomics quantified 86 lipids and revealed reduced abundance in Ceramide 18: 1 16:0 (Cer_NS d18:1_16:0), Ether linked Phosphatidylethanolamine 16:0 22:6 (EtherPE 16:0e_22:6), and Ether linked Phosphatidylcholine 16:0 22:6 (EtherPC 16:0e_22:6). We also quantified 12 amino acids and observed a subtle dose-dependent reduction in the levels of L-Histidine. Exposure to atenolol did not impact larval locomotor activity based on a Visual Motor Response test. Taken together, atenolol at environmentally relevant levels decreased heart rate of developing zebrafish and altered lipid content. As such, exposure to beta-blockers like atenolol may have negative consequences for developmental trajectories and growth of aquatic species.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Atenolol/toxicidade , Lipidômica , Éteres , Lipídeos , Larva , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero
14.
Environ Toxicol Pharmacol ; 97: 104037, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36526081

RESUMO

The potential toxicity of several perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic species are not well understood. Here, we assessed the sub-lethal toxicity potential of perfluoroheptanoic acid (PFHpA) to developing zebrafish. PFHpA was not acutely toxic to fish up to 50 µM and there was > 96% survival in all treatments. Exposure to 200 µM PFHpA decreased ATP-linked respiration of embryos. There was no evidence for ROS induction in 7-day-old larvae fish exposed to 0.1 µM or 1 µM PFHpA. Twenty-four transcripts related to mitochondrial complexes I through V were measured and atp06, cox4i1, and cyc1 levels were decreased in larval zebrafish in a concentration-dependent manner by PFHpA exposure. Locomotor activity was reduced in fish exposed to 0.1 µM PFHpA based on a visual motor response test. Anxiolytic-type behaviors were not affected by PFHpA. This study contributes to environmental risk assessments for perfluorinated chemicals.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Peixe-Zebra , Estresse Oxidativo , Fluorocarbonos/toxicidade , Locomoção , Larva , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
15.
Toxics ; 10(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548609

RESUMO

Industrial and consumer products, such as pesticides, lubricants, and cosmetics, can contain perfluorinated compounds (PFCs). Although many short-chain PFCs have been linked to physiological and behavioral changes in fish, there are limited data on longer-chain PFCs. The objective of this study was to determine the potential impact of perfluorotetradecanoic acid (PFTeDA) exposure on zebrafish (Danio rerio) during early developmental stages. We measured several endpoints including gene expression, mitochondrial bioenergetics, and locomotor activity in zebrafish. Survival, timing of hatching, and deformity frequency were unaffected by PFTeDA at the concentrations tested (0.01, 0.1, 1, and 10 µM) over a 7-day exposure period. The expression levels of mitochondrial-related genes (cox1 and mt-nd3) and oxidative stress-related genes (cat, hsp70, and hsp90a) were increased in larval fish with exposure to 10 µM PFTeDA; however, there was no change in oxidative respiration of embryos (i.e., basal respiration and oligomycin-induced ATP-linked respiration). Reactive oxygen species were reduced in larvae treated with 10 µM PFTeDA, coinciding with the increased transcription of antioxidant defense genes. Both the visual motor response test and light-dark preference test were conducted on 7 dpf larvae and yielded no significant findings. This study improves current knowledge regarding toxicity mechanisms for longer-chain PFCs such as PFTeDA.

16.
Neurotoxicology ; 91: 290-304, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700754

RESUMO

Strobilurin fungicides are quinone outside inhibitors (QoI) used to treat fungal pathogens for agricultural and residential use. Here, we compared the potential for neurotoxicity of the widely used strobilurins, azoxystrobin (AZS) and trifloxystrobin (TFS), in differentiated human SH-SY5Y cells. Fungicides did not include cytotoxicity up to 200 µM but both induced loss of cell viability at 48 h, with TFS showing slightly higher toxicity that AZS. Caspase 3/7 activity was induced in SH-SY5Y cells by both fungicides at 48 h (50 µM for AZS and 25 µM for TFS). ATP levels were reduced following a 24-hour exposure to > 25 µM AZS and > 6.25 µM TFS and both fungicides rapidly impaired oxidative respiration (~12.5 µM for AZS and ~3.125 µM TFS) and decreased oligomycin-induced ATP production, maximal respiration, and mitochondrial spare capacity. AZS at 100 µM showed a continual impairment of mitochondrial membrane potential (MMP) between 4 and 48 h while TFS at > 50 µM decreased MMP at 24 h. Taken together, TFS exerted higher mitochondrial toxicity at lower concentrations compared to AZS in SH-SY5Y cells. To discern toxicity mechanisms of strobilurin fungicides, lipidomics was conducted in SH-SY5Y cells following exposure to 6.25 µM and 25 µM AZS, and a total of 1595 lipids were detected, representing 49 different lipid classes. Lipid classes with the largest proportion of lipids detected in SH-SY5Y cells included triglycerides (17%), phosphatidylethanolamines (8%), ether-linked triglycerides (8%), phosphatidylcholines (7%), ether-linked phosphatidylethanolamines (6%), and diacylglycerols (5%). Together, these 5 lipid classes accounted for over 50% of the total lipids measured in SH-SY5Y cells. Lipids that were increased by AZS included acyl carnitine, which plays a role in long chain fatty acid utilization for mitochondrial ß-oxidation, as well as non-modified, ether linked, and oxidized triacylglycerols, suggesting compensatory upregulation of triglyceride biosynthesis. The ceramide HexCer-NS, linked to neurodegenerative diseases, was decreased in abundance following AZS exposure. In summary, strobilurin fungicides rapidly inhibit mitochondrial oxidative respiration and alter the abundance of several lipids in neuronal cells, relevant for understanding environmental exposure risks related to their neurotoxicity.


Assuntos
Fungicidas Industriais , Neuroblastoma , Síndromes Neurotóxicas , Acetatos , Trifosfato de Adenosina , Linhagem Celular Tumoral , Éteres , Fungicidas Industriais/toxicidade , Humanos , Iminas , Lipidômica , Potencial da Membrana Mitocondrial , Fosfatidiletanolaminas , Pirimidinas , Estrobilurinas/toxicidade , Triglicerídeos
17.
Environ Toxicol Pharmacol ; 93: 103873, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504511

RESUMO

The relative toxicity of glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) to zebrafish were compared. Embryos/larvae were exposed to one dose of either GLY (0.1, 1, or 10 µM), AMPA (0.1, 1, or 10 µM), or a 1 µM mixture for 7-days post-fertilization. Survival, success of hatch, and deformity frequency were not different from controls. Neither chemical induced reactive oxygen species in larval fish. GLY increased superoxide dismutase 2 mRNA in larvae while AMPA increased catalase and superoxide dismutase 1 in a concentration-specific manner. GLY increased cytochrome c oxidase subunit 4 isoform 1 and citrate synthase mRNA in larvae while AMPA decreased cytochrome c oxidase I and increased 3-hydroxyacyl CoA dehydrogenase transcripts. Hyperactivity was noted in fish treated with GLY, but not AMPA nor the mixture. Anxiety-like behaviors were absent with exposure to GLY or AMPA. GLY and AMPA may exert different effects at the molecular and behavioral level.


Assuntos
Herbicidas , Peixe-Zebra , Animais , Complexo IV da Cadeia de Transporte de Elétrons , Glicina/análogos & derivados , Herbicidas/toxicidade , Larva , Organofosfonatos , RNA Mensageiro , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Glifosato
18.
Artigo em Inglês | MEDLINE | ID: mdl-35500749

RESUMO

The dinitrophenol herbicide dinoseb is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Studies in fish demonstrate impaired OXPHOS is associated with altered immune system responses and locomotor activity in fish. The objective of this study was to determine the effect of dinoseb on zebrafish (Danio rerio) during early stages of development. We measured oxygen consumption rates of embryos, transcripts related to OXPHOS, growth, and the immune system (cytokines and immune-signaling transcripts), and locomotor activity. We hypothesized that OXPHOS of fish would be impaired in vivo, leading to altered basal immune system expression and locomotor activity. Oxidative respiration assessments in embryos revealed that dinoseb decreased both mean basal respiration and oligomycin-induced ATP-linked respiration. Expression levels of cytochrome c oxidase complex IV, 3-hydroxyacyl-COA dehydrogenase and superoxide dismutase 1 were decreased in larvae following exposure to dinoseb while succinate dehydrogenase complex flavoprotein subunit A, insulin growth factor 1 (igf1) and igf2a mRNA were increased in abundance. Immune-related transcripts chemokine (C-X-C motif) ligand 1 and matrix metallopeptidase 9 (MMP-9) were decreased in expression levels while toll-like receptor 5a and 5b were increased in expression. In addition, a visual motor response test was conducted on both 6 and 7 dpf larvae to determine if dinoseb impaired locomotor activity. Dinoseb decreased locomotor activity in 7 dpf larvae but not 6 dpf. This study improves knowledge of toxicity mechanisms for dinoseb in early stages of fish development and demonstrates that mitochondrial toxicants may disrupt immune signaling in zebrafish.


Assuntos
Herbicidas , Peixe-Zebra , 2,4-Dinitrofenol/análogos & derivados , Animais , Embrião não Mamífero , Herbicidas/toxicidade , Imunidade , Larva , Mitocôndrias , Peixe-Zebra/metabolismo
19.
Environ Toxicol Pharmacol ; 90: 103809, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35033682

RESUMO

Antineoplastics treat cancers and enter aquatic ecosystems through wastewater and hospital effluent. Risks associated with antineoplastics are not well characterized in aquatic organisms. We conducted zebrafish embryo/larvae toxicity assays to evaluate responses to cyclophosphamide (0.01-50 µM). Zebrafish survival was affected by 5 µM cyclophosphamide and deformities were noted at > 1 µM. Oxidative respiration remained unchanged in embryos with exposure up to 200 µM. Reactive oxygen species were not increased by 50 µM cyclophosphamide exposure. More than 15 oxidative stress and immune-related transcripts were measured. Superoxide dismutase 2 and heat shock protein 70 and 90a were induced in larvae by cyclophosphamide. Immune-related transcripts were assessed due to immunosuppressive properties of cyclophosphamide, and mmp9 and myd88 levels were altered in expression. Hyperactivity of larvae was noted following 5 µM cyclophosphamide exposure. There was no change in anxiety-related endpoints (light-dark preference). Risks for larval fish exposed to cyclophosphamide in the environment may be low.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ciclofosfamida/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Antineoplásicos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/anormalidades , Peixe-Zebra/fisiologia
20.
Cell Mol Neurobiol ; 42(2): 419-437, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33594519

RESUMO

The colonic epithelium is the site of production and transport of many vasoactive metabolites and neurotransmitters that can modulate the immune system, affect cellular metabolism, and subsequently regulate blood pressure. As an important interface between the microbiome and its host, the colon can contribute to the development of hypertension. In this critical review, we highlight the role of colonic inflammation and microbial metabolites on the gut brain axis in the pathology of hypertension, with special emphasis on the interaction between tumor necrosis factor α (TNFα) and short chain fatty acid (SCFA) metabolites. Here, we review the current literature and identify novel pathways in the colonic epithelium related to hypertension. A network analysis on transcriptome data previously generated in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats reveals differences in several pathways associated with inflammation involving TNFα (NF-κB and STAT Expression Targets) as well as oxidative stress. We also identify down-regulation of networks associated with gastrointestinal function, cardiovascular function, enteric nervous system function, and cholinergic and adrenergic transmission. The analysis also uncovered transcriptome responses related to glycolysis, butyrate oxidation, and mitochondrial function, in addition to gut neuropeptides that serve as modulators of blood pressure and metabolic function. We present a model for the role of TNFα in regulating bacterial metabolite transport and neuropeptide signaling in the gastrointestinal system, highlighting the complexity of host-microbiota interactions in hypertension.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Animais , Eixo Encéfalo-Intestino , Epitélio/metabolismo , Microbioma Gastrointestinal/fisiologia , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA