Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 18(1): 59, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443126

RESUMO

BACKGROUND: The mechanisms shaping the rare microbial biosphere and its role in ecosystems remain unclear. We developed an approach to study ecological patterns in the rare biosphere and use it on a vast collection of marine microbiomes, sampled in coastal ecosystems at a regional scale. We study the assembly processes, and the ecological strategies constituting the rare protistan biosphere. Using the phylogeny and morpho-trophic traits of these protists, we also explore their functional potential. RESULTS: Taxonomic community composition remained stable along rank abundance curves. Conditionally rare taxa, driven by selection processes, and transiently rare taxa, with stochastic distributions, were evidenced along the rank abundance curves of all size-fractions. Specific taxa within the divisions Sagenista, Picozoa, Telonemia, and Choanoflagellida were rare across time and space. The distribution of traits along rank abundance curves outlined a high functional redundancy between rare and abundant protists. Nevertheless, trophic traits illustrated an interplay between the trophic groups of different size-fractions. CONCLUSIONS: Our results suggest that rare and abundant protists are evolutionary closely related, most notably due to the high microdiversity found in the rare biosphere. We evidenced a succession of assembly processes and strategies of rarity along rank abundance curves that we hypothesize to be common to most microbiomes at the regional scale. Despite high functional redundancy in the rare protistan biosphere, permanently rare protists were evidenced, and they could play critical functions as bacterivores and decomposers from within the rare biosphere. Finally, changes in the composition of the rare protistan biosphere could be influenced by the trophic regime of aquatic ecosystems. Our work contributes to understanding the role of rare protists in microbiomes.

2.
Environ Microbiol ; 24(12): 5966-5983, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302091

RESUMO

Despite theoretical expectations, marine microeukaryote population are often highly structured and the mechanisms behind such patterns remain to be elucidated. These organisms display huge census population sizes, yet genotyping usually requires clonal strains originating from single cells, hindering proper population sampling. Estimating allelic frequency directly from population wide samples, without any isolation step, offers an interesting alternative. Here, we validate the use of meta-transcriptome environmental samples to determine the population genetic structure of the dinoflagellate Alexandrium minutum. Strain and meta-transcriptome based results both indicated a strong genetic structure for A. minutum in Western Europe, to the level expected between cryptic species. The presence of numerous private alleles, and even fixed polymorphism, would indicate ancient divergence and absence of gene flow between populations. Single nucleotide polymorphisms (SNPs) displaying strong allele frequency differences were distributed throughout the genome, which might indicate pervasive selection from standing genetic variation (soft selective sweeps). However, a few genomic regions displayed extremely low diversity that could result from the fixation of adaptive de novo mutations (hard selective sweeps) within the populations.


Assuntos
Dinoflagellida , Dinoflagellida/genética , Transcriptoma , Metagenômica , Fluxo Gênico , Densidade Demográfica
3.
Sci Adv ; 7(51): eabj5230, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910521

RESUMO

Communication between conspecific individuals is an essential part of life both in terrestrial and marine realms. Until recently, social behavior in marine phytoplankton was assumed to rely mainly on the secretion of a variety of infochemicals that allowed population-scale collective responses. Here, we demonstrate that pelagic diatoms also use Sun-stimulated fluorescence signals for synchronizing their behavior. These unicellular microorganisms, playing a key biogeochemical role in the ocean, use photoreceptor proteins and red­far-red fluorescent radiation to communicate. A characteristic beaconing signal is generated by rhythmic organelle displacement within the cell cytoplasm, triggering coordinated population behavior. These light-based communication networks could critically determine major facets of diatom ecology and fitness and regulate the dynamics of larger-scale ocean processes.

4.
Environ Microbiol ; 23(9): 4956-4979, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497010

RESUMO

In a future scenario of increasing temperatures in North-Atlantic waters, the risk associated with the expansion of the harmful, benthic dinoflagellate Ostreopsis cf. siamensis has to be evaluated and monitored. Microscopy observations and spatio-temporal surveys of environmental DNA (eDNA) were associated with Lagrangian particle dispersal simulations to: (i) establish the current colonization of the species in the Bay of Biscay, (ii) assess the spatial connectivity among sampling zones that explain this distribution, and (iii) identify the sentinel zones to monitor future expansion. Throughout a sampling campaign carried out in August to September 2018, microscope analysis showed that the species develops in the south-east of the bay where optimal temperatures foster blooms. Quantitative PCR analyses revealed its presence across almost the whole bay to the western English Channel. An eDNA time-series collected on plastic samplers showed that the species occurs in the bay from April to September. Due to the water circulation, colonization of the whole bay from the southern blooming zones is explained by inter-site connectivity. Key areas in the middle of the bay permit continuous dispersal connectivity towards the north. These key areas are proposed as sentinel zones to monitor O. cf. siamensis invasions towards the presumably warming water of the North-East Atlantic.


Assuntos
Dinoflagellida , Baías , Dinoflagellida/genética , Temperatura
5.
Sci Rep ; 11(1): 2682, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514820

RESUMO

Oceanic physics at fine scale; e.g. eddies, fronts, filaments; are notoriously difficult to sample. However, an increasing number of theoretical approaches hypothesize that these processes affect phytoplankton diversity which have cascading effects on regional ecosystems. In 2015, we targeted the Iroise Sea (France) and evidenced the setting up of the Ushant tidal front from the beginning of spring to late summer. Seawater samples were taken during three sampling cruises and DNA-barcoding allowed us to investigate patterns of eukaryotic phytoplankton diversity across this front. First focusing on patterns of taxonomic richness, we evidenced that the front harbored a hotspot of eukaryotic phytoplankton diversity sustained throughout summer. We then detail the ecological processes leading to the formation of this hotspot by studying shifts in community composition across the Iroise Sea. Physical mixing mingled the communities surrounding the front, allowing the formation of a local ecotone, but it was cycles of disturbances and nutrient inputs over the front that allowed a decrease in competitive exclusion, which maintained a higher diversity of rare phytoplankton taxa. These processes did not select a specific ecological strategy as inferred by a trait approach coupled to our taxonomic approach. Instead the front favored higher richness within widespread strategies, resulting in functional redundancy. We detail how fine-scale ocean physics affect phytoplankton diversity and suppose that this interplay is a major control on regional ecosystems.

6.
ISME Commun ; 1(1): 34, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37938261

RESUMO

Parasites in the genus Amoebophrya sp. infest dinoflagellate hosts in marine ecosystems and can be determining factors in the demise of blooms, including toxic red tides. These parasitic protists, however, rarely cause the total collapse of Dinophyceae blooms. Experimental addition of parasite-resistant Dinophyceae (Alexandrium minutum or Scrippsiella donghaienis) or exudates into a well-established host-parasite coculture (Scrippsiella acuminata-Amoebophrya sp.) mitigated parasite success and increased the survival of the sensitive host. This effect was mediated by waterborne molecules without the need for a physical contact. The strength of the parasite defenses varied between dinoflagellate species, and strains of A. minutum and was enhanced with increasing resistant host cell concentrations. The addition of resistant strains or exudates never prevented the parasite transmission entirely. Survival time of Amoebophrya sp. free-living stages (dinospores) decreased in presence of A. minutum but not of S. donghaienis. Parasite progeny drastically decreased with both species. Integrity of the dinospore membrane was altered by A. minutum, providing a first indication on the mode of action of anti-parasitic molecules. These results demonstrate that extracellular defenses can be an effective strategy against parasites that protects not only the resistant cells producing them, but also the surrounding community.

7.
Sci Rep ; 10(1): 6182, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277155

RESUMO

Harmful algal blooms are caused by specific members of microbial communities. Understanding the dynamics of these events requires comparing the strategies developed by the problematic species to cope with environmental fluctuations to the ones developed by the other members of the community. During three consecutive years, the meta-transcriptome of micro-eukaryote communities was sequenced during blooms of the toxic dinoflagellate Alexandrium minutum. The dataset was analyzed to investigate species specific gene expression dynamics. Major shifts in gene expression were explained by the succession of different species within the community. Although expression patterns were strongly correlated with fluctuation of the abiotic environment, and more specifically with nutrient concentration, transcripts specifically involved in nutrient uptake and metabolism did not display extensive changes in gene expression. Compared to the other members of the community, A. minutum displayed a very specific expression pattern, with lower expression of photosynthesis transcripts and central metabolism genes (TCA cycle, glucose metabolism, glycolysis…) and contrasting expression pattern of ion transporters across environmental conditions. These results suggest the importance of mixotrophy, cell motility and cell-to-cell interactions during A. minutum blooms.


Assuntos
Dinoflagellida/genética , Proliferação Nociva de Algas/fisiologia , Microbiota/genética , Oceano Atlântico , Código de Barras de DNA Taxonômico , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Canais Iônicos/genética , Transporte de Íons/genética , Fotossíntese/genética , Especificidade da Espécie
8.
Environ Microbiol ; 21(2): 730-749, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30672084

RESUMO

The study of protistan functional diversity is crucial to understand the dynamics of oceanic ecological processes. We combined the metabarcoding data of various coastal ecosystems and a newly developed trait-based approach to study the link between taxonomic and functional diversity across marine protistan communities of different size-classes. Environmental DNA was extracted and the V4 18S rDNA genomic region was amplified and sequenced. In parallel, we tried to annotate the operational taxonomic units (OTUs) from our metabarcoding dataset to 30 biological traits using published and accessible information on protists. We then developed a method to study trait correlations across protists (i.e. trade-offs) in order to build the best functional groups. Based on the annotated OTUs and our functional groups, we demonstrated that the functional diversity of marine protist communities varied in parallel with their taxonomic diversity. The coupling between functional and taxonomic diversity was conserved across different protist size classes. However, the smallest size-fraction was characterized by wider taxonomic and functional groups diversity, corroborating the idea that nanoplankton and picoplankton are part of a more stable ecological background on which larger protists and metazoans might develop.


Assuntos
Biodiversidade , Eucariotos/classificação , Código de Barras de DNA Taxonômico , Ecologia , Eucariotos/genética , Eucariotos/isolamento & purificação , Eucariotos/metabolismo , Oceanos e Mares , Filogenia , RNA Ribossômico 18S/genética
9.
Harmful Algae ; 53: 1-7, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-28073436

RESUMO

The "Applied Simulations and Integrated Modelling for the Understanding of Harmful Algal Blooms" (Asimuth) project sought to develop a harmful algal bloom (HAB) alert system for Atlantic Europe. This was approached by combining, at a national or regional level, regulatory monitoring phytoplankton and biotoxin data with satellite remote sensing and other information on current marine conditions, coupled with regional scale models that included a representation of HAB transport. Synthesis of these products was achieved by expert interpretation within HAB risk alert bulletins that were prepared on a regular basis (typically weekly) for use by the aquaculture industry. In this preface to the Asimuth Special Issue we outline the main HAB species of concern in the region and the strengths and limitations of different methodologies to provide early warning of their blooms.


Assuntos
Monitoramento Ambiental , Previsões , Proliferação Nociva de Algas , Risco , Oceano Atlântico , Europa (Continente)
10.
PLoS One ; 10(6): e0127623, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030411

RESUMO

Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole.


Assuntos
Dinoflagellida/fisiologia , Dinoflagellida/parasitologia , Alimentos , Modelos Biológicos , Parasitos/fisiologia , Plâncton/fisiologia , Animais , Simulação por Computador , Eutrofização , Análise Numérica Assistida por Computador
11.
PLoS One ; 9(2): e90507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587384

RESUMO

Phytoplankton blooms are usually dominated by chain-forming diatom species that can alter food pathways from primary producers to predators by reducing the interactions between intermediate trophic levels. The food-web modifications are determined by the length of the chains; however, the estimation is biased because traditional sampling strategies damage the chains and, therefore, change the phytoplankton size structure. Sedimentological studies around oceanic fronts have shown high concentrations of giant diatom mats (>1 cm in length), suggesting that the size of diatom chains is underestimated in the pelagic realm. Here, we investigate the variability in size and abundance of phytoplankton chains at the Ushant tidal front (NW France) using the Video Fluorescence Analyzer (VFA), a novel and non-invasive system. CTD and Scanfish profiling characterized a strong temperature and chlorophyll front, separating mixed coastal waters from the oceanic-stratified domain. In order to elucidate spring-neap variations in the front, vertical microstructure profiler was used to estimate the turbulence and vertical nitrate flux. Key findings were: (1) the VFA system recorded large diatom chains up to 10.7 mm in length; (2) chains were mainly distributed in the frontal region, with maximum values above the pycnocline in coincidence with the maximum chlorophyll; (3) the diapycnal fluxes of nitrate enabled the maintenance of the bloom in the frontal area throughout the spring-neap tidal cycle; (4) from spring to neap tide the chains length was significantly reduced; (5) during neap tide, the less intense vertical diffusion of nutrients, as well as the lower turbulence around the chains, intensified nutrient-depleted conditions and, thus, very large chains became disadvantageous. To explain this pattern, we suggest that size plasticity is an important ecological trait driving phytoplankton species competition. Although this plasticity behavior is well known from experiments in the laboratory, it has never been reported from observations in the field.


Assuntos
Diatomáceas/fisiologia , Ecossistema , Cadeia Alimentar , Fitoplâncton/fisiologia , Baías , Biomassa , Clorofila/metabolismo , Diatomáceas/metabolismo , Fluorescência , França , Geografia , Nitratos/metabolismo , Fitoplâncton/metabolismo , Densidade Demográfica , Estações do Ano , Espanha , Temperatura , Gravação de Videoteipe/métodos , Movimentos da Água
12.
Mar Drugs ; 11(8): 2964-81, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23959151

RESUMO

In 2012, there were exceptional blooms of D. acuminata in early spring in what appeared to be a mesoscale event affecting Western Iberia and the Bay of Biscay. The objective of this work was to identify common climatic patterns to explain the observed anomalies in two important aquaculture sites, the Galician Rías Baixas (NW Spain) and Arcachon Bay (SW France). Here, we examine climate variability through physical-biological couplings, Sea Surface Temperature (SST) anomalies and time of initiation of the upwelling season and its intensity over several decades. In 2012, the mesoscale features common to the two sites were positive anomalies in SST and unusual wind patterns. These led to an atypical predominance of upwelling in winter in the Galician Rías, and increased haline stratification associated with a southward advection of the Gironde plume in Arcachon Bay. Both scenarios promoted an early phytoplankton growth season and increased stability that enhanced D. acuminata growth. Therefore, a common climate anomaly caused exceptional blooms of D. acuminata in two distant regions through different triggering mechanisms. These results increase our capability to predict intense diarrhetic shellfish poisoning outbreaks in the early spring from observations in the preceding winter.


Assuntos
Clima , Dinoflagellida/crescimento & desenvolvimento , Proliferação Nociva de Algas , Fitoplâncton/crescimento & desenvolvimento , Aquicultura , França , Oceanografia , Oceanos e Mares , Estações do Ano , Intoxicação por Frutos do Mar/epidemiologia , Intoxicação por Frutos do Mar/etiologia , Espanha , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA