Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(6): e0412623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700329

RESUMO

Four species of non-tuberculous mycobacteria (NTM) rated as biosafety level 1 or 2 (BSL-1/BSL-2) organisms and showing higher genomic similarity with Mycobacterium tuberculosis (Mtb) than previous comparator species Mycobacterium kansasii and Mycobacterium marinum were subjected to genomic and phenotypic characterization. These species named Mycobacterium decipiens, Mycobacterium lacus, Mycobacterium riyadhense, and Mycobacterium shinjukuense might represent "missing links" between low-virulent mycobacterial opportunists and the highly virulent obligate pathogen Mtb. We confirmed that M. decipiens is the closest NTM species to Mtb currently known and found that it has an optimal growth temperature of 32°C-35°C and not 37°C. M. decipiens showed resistance to rifampicin, isoniazid, and ethambutol, whereas M. lacus and M. riyadhense showed resistance to isoniazid and ethambutol. M. shinjukuense was sensitive to all three first-line TB drugs, and all four species were sensitive to bedaquiline, a third-generation anti-TB drug. Our results suggest these four NTM may be useful models for the identification and study of new anti-TB molecules, facilitated by their culture under non-BSL-3 conditions as compared to Mtb. M. riyadhense was the most virulent of the four species in cellular and mouse infection models. M. decipiens also multiplied in THP-1 cells at 35°C but was growth impaired at 37°C. Genomic comparisons showed that the espACD locus, essential for the secretion of ESX-1 proteins in Mtb, was present only in M. decipiens, which was able to secrete ESAT-6 and CFP-10, whereas secretion of these antigens varied in the other species, making the four species interesting examples for studying ESX-1 secretion mechanisms.IMPORTANCEIn this work, we investigated recently identified opportunistic mycobacterial pathogens that are genomically more closely related to Mycobacterium tuberculosis (Mtb) than previously used comparator species Mycobacterium kansasii and Mycobacterium marinum. We confirmed that Mycobacterium decipiens is the currently closest known species to the tubercle bacilli, represented by Mycobacterium canettii and Mtb strains. Surprisingly, the reference strain of Mycobacterium riyadhense (DSM 45176), which was purchased as a biosafety level 1 (BSL-1)-rated organism, was the most virulent of the four species in the tested cellular and mouse infection models, suggesting that a BSL-2 rating might be more appropriate for this strain than the current BSL-1 rating. Our work establishes the four NTM species as interesting study models to obtain new insights into the evolutionary mechanisms and phenotypic particularities of mycobacterial pathogens that likely have also impacted the evolution of the key pathogen Mtb.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Micobactérias não Tuberculosas , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/efeitos dos fármacos , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Humanos , Genoma Bacteriano/genética , Genômica , Fenótipo , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/microbiologia , Filogenia , Animais , Tuberculose/microbiologia , Farmacorresistência Bacteriana/genética , Camundongos
2.
FEMS Microbiol Rev ; 48(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365982

RESUMO

Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.


Assuntos
Bacillus , Mycobacterium tuberculosis , Animais , Humanos , Mycobacterium tuberculosis/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA