Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 16(11): e2005952, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383040

RESUMO

A developing plant organ exhibits complex spatiotemporal patterns of growth, cell division, cell size, cell shape, and organ shape. Explaining these patterns presents a challenge because of their dynamics and cross-correlations, which can make it difficult to disentangle causes from effects. To address these problems, we used live imaging to determine the spatiotemporal patterns of leaf growth and division in different genetic and tissue contexts. In the simplifying background of the speechless (spch) mutant, which lacks stomatal lineages, the epidermal cell layer exhibits defined patterns of division, cell size, cell shape, and growth along the proximodistal and mediolateral axes. The patterns and correlations are distinctive from those observed in the connected subepidermal layer and also different from the epidermal layer of wild type. Through computational modelling we show that the results can be accounted for by a dual control model in which spatiotemporal control operates on both growth and cell division, with cross-connections between them. The interactions between resulting growth and division patterns lead to a dynamic distributions of cell sizes and shapes within a deforming leaf. By modulating parameters of the model, we illustrate how phenotypes with correlated changes in cell size, cell number, and organ size may be generated. The model thus provides an integrated view of growth and division that can act as a framework for further experimental study.


Assuntos
Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Desenvolvimento Vegetal/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Tamanho Celular , Regulação da Expressão Gênica de Plantas/genética , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Análise Espaço-Temporal
2.
Elife ; 62017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28414273

RESUMO

Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.


Assuntos
Cartilagem/embriologia , Vertebrados/embriologia , Animais , Simulação por Computador , Camundongos , Modelos Biológicos
3.
Elife ; 62017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28166865

RESUMO

Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals.


Assuntos
Antirrhinum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Antirrhinum/genética , Flores/genética
4.
Development ; 143(18): 3394-406, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624834

RESUMO

Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.


Assuntos
Brassicaceae/anatomia & histologia , Brassicaceae/metabolismo , Frutas/anatomia & histologia , Frutas/metabolismo , Anisotropia , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Capsella/anatomia & histologia , Capsella/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Curr Biol ; 22(19): 1739-46, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22902754

RESUMO

BACKGROUND: In all multicellular organisms, the links between patterning genes, cell growth, cell cycle, cell size homeostasis, and organ growth are poorly understood, partly due to the difficulty of dynamic, 3D analysis of cell behavior in growing organs. A crucial step in plant organogenesis is the emergence of organ primordia from the apical meristems. Here, we combined quantitative, 3D analysis of cell geometry and DNA synthesis to study the role of the transcription factor JAGGED (JAG), which functions at the interface between patterning and primordium growth in Arabidopsis flowers. RESULTS: The floral meristem showed isotropic growth and tight coordination between cell volume and DNA synthesis. Sepal primordia had accelerated cell division, cell enlargement, anisotropic growth, and decoupling of DNA synthesis from cell volume, with a concomitant increase in cell size heterogeneity. All these changes in growth parameters required JAG and were genetically separable from primordium emergence. Ectopic JAG activity in the meristem promoted entry into S phase at inappropriately small cell volumes, suggesting that JAG can override a cell size checkpoint that operates in the meristem. Consistent with a role in the transition from meristem to primordium identity, JAG directly repressed the meristem regulatory genes BREVIPEDICELLUS and BELL 1 in developing flowers. CONCLUSIONS: We define the cellular basis for the transition from meristem to organ identity and identify JAG as a key regulator of this transition. JAG promotes anisotropic growth and is required for changes in cell size homeostasis associated with accelerated growth and the onset of differentiation in organ primordia.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Flores/citologia , Flores/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Tamanho Celular , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/citologia , Meristema/genética , Meristema/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Science ; 335(6072): 1092-6, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22383846

RESUMO

A major challenge in biology is to understand how buds comprising a few cells can give rise to complex plant and animal appendages like leaves or limbs. We address this problem through a combination of time-lapse imaging, clonal analysis, and computational modeling. We arrive at a model that shows how leaf shape can arise through feedback between early patterns of oriented growth and tissue deformation. Experimental tests through partial leaf ablation support this model and allow reevaluation of previous experimental studies. Our model allows a range of observed leaf shapes to be generated and predicts observed clone patterns in different species. Thus, our experimentally validated model may underlie the development and evolution of diverse organ shapes.


Assuntos
Modelos Biológicos , Morfogênese , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Antirrhinum/anatomia & histologia , Antirrhinum/genética , Antirrhinum/crescimento & desenvolvimento , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polaridade Celular , Simulação por Computador , Genes de Plantas , Folhas de Planta/citologia , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA