Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Heart Lung Transplant ; 42(3): 398-405, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36609091

RESUMO

INTRODUCTION: Chronic thromboembolic pulmonary hypertension (CTEPH) is an underdiagnosed disease of uncertain etiology. Altered endothelial homeostasis, defective angiogenesis and inflammation are implicated. Angiopoietin 2 (Ang2) impairs acute thrombus resolution and is associated with vasculopathy in idiopathic pulmonary arterial hypertension. METHODS: We assessed circulating proteins associated with these processes in serum from patients with CTEPH (n = 71) before and after pulmonary endarterectomy (PEA), chronic thromboembolic pulmonary disease without pulmonary hypertension (CTEPD, n = 9) and healthy controls (n = 20) using Luminex multiplex arrays. Comparisons between groups were made using multivariable rank regression models. Ang2 and high-sensitivity C-reactive protein (hsCRP) were measured in a larger validation dataset (CTEPH = 277, CTEPD = 26). Cox proportional hazards models were used to identify markers predictive of survival. RESULTS: In CTEPH patients, Ang2, interleukin (IL) 8, tumor necrosis factor α, and hsCRP were elevated compared to controls, while vascular endothelial growth factor (VEGF) c was lower (p < 0.05). Ang2 fell post-PEA (p < 0.05) and was associated with both pre- and post-PEA pulmonary hemodynamic variables and functional assessments (p < 0.05). In the validation dataset, Ang2 was significantly higher in CTEPH compared to CTEPD. Pre-operative hsCRP was an independent predictor of mortality. CONCLUSIONS: We hypothesize that CTEPH patients have significant distal micro-vasculopathy and consequently high circulating Ang2. Patients with CTEPD without pulmonary hypertension have no discernible distal micro-vasculopathy and therefore have low circulating Ang2. This suggests Ang2 may be critical to CTEPH disease pathogenesis (impaired thrombus organization and disease severity).


Assuntos
Angiopoietina-2 , Proteína C-Reativa , Hipertensão Pulmonar , Humanos , Biomarcadores , Endarterectomia/efeitos adversos , Hemodinâmica , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Fator A de Crescimento do Endotélio Vascular
2.
Cardiovasc Res ; 118(11): 2519-2534, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34528097

RESUMO

AIMS: Endothelial cell (EC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension (PAH). We aimed to characterize EC dynamics in PAH at single-cell resolution. METHODS AND RESULTS: We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs isolated from an EC lineage-tracing mouse model in Control and SU5416/hypoxia-induced PAH conditions. EC populations corresponding to distinct lung vessel types, including two discrete capillary populations, were identified in both Control and PAH mice. Differential gene expression analysis revealed global PAH-induced EC changes that were confirmed by bulk RNA-seq. This included upregulation of the major histocompatibility complex class II pathway, supporting a role for ECs in the inflammatory response in PAH. We also identified a PAH response specific to the second capillary EC population including upregulation of genes involved in cell death, cell motility, and angiogenesis. Interestingly, four genes with genetic variants associated with PAH were dysregulated in mouse ECs in PAH. To compare relevance across PAH models and species, we performed a detailed analysis of EC heterogeneity and response to PAH in rats and humans through whole-lung PAH scRNA-seq datasets, revealing that 51% of up-regulated mouse genes were also up-regulated in rat or human PAH. We identified promising new candidates to target endothelial dysfunction including CD74, the knockdown of which regulates EC proliferation and barrier integrity in vitro. Finally, with an in silico cell ordering approach, we identified zonation-dependent changes across the arteriovenous axis in mouse PAH and showed upregulation of the Serine/threonine-protein kinase Sgk1 at the junction between the macro- and microvasculature. CONCLUSION: This study uncovers PAH-induced EC transcriptomic changes at a high resolution, revealing novel targets for potential therapeutic candidate development.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Humanos , Camundongos , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar , Ratos , Análise de Sequência de RNA
3.
Am J Respir Crit Care Med ; 203(11): 1419-1430, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320799

RESUMO

Rationale: Pulmonary endothelial permeability contributes to the high-permeability pulmonary edema that characterizes acute respiratory distress syndrome. Circulating BMP9 (bone morphogenetic protein 9) is emerging as an important regulator of pulmonary vascular homeostasis. Objectives:To determine whether endogenous BMP9 plays a role in preserving pulmonary endothelial integrity and whether loss of endogenous BMP9 occurs during LPS challenge. Methods: A BMP9-neutralizing antibody was administrated to healthy adult mice, and lung vasculature was examined. Potential mechanisms were delineated by transcript analysis in human lung endothelial cells. The impact of BMP9 administration was evaluated in a murine acute lung injury model induced by inhaled LPS. Levels of BMP9 were measured in plasma from patients with sepsis and from endotoxemic mice. Measurements and Main Results: Subacute neutralization of endogenous BMP9 in mice (N = 12) resulted in increased lung vascular permeability (P = 0.022), interstitial edema (P = 0.0047), and neutrophil extravasation (P = 0.029) compared with IgG control treatment (N = 6). In pulmonary endothelial cells, BMP9 regulated transcriptome pathways implicated in vascular permeability and cell-membrane integrity. Augmentation of BMP9 signaling in mice (N = 8) prevented inhaled LPS-induced lung injury (P = 0.0027) and edema (P < 0.0001). In endotoxemic mice (N = 12), endogenous circulating BMP9 concentrations were markedly reduced, the causes of which include a transient reduction in hepatic BMP9 mRNA expression and increased elastase activity in plasma. In human patients with sepsis (N = 10), circulating concentratons of BMP9 were also markedly reduced (P < 0.0001). Conclusions: Endogenous circulating BMP9 is a pulmonary endothelial-protective factor, downregulated during inflammation. Exogenous BMP9 offers a potential therapy to prevent increased pulmonary endothelial permeability in lung injury.


Assuntos
Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Endotélio/patologia , Endotoxemia/sangue , Fator 2 de Diferenciação de Crescimento/sangue , Sepse/sangue , Lesão Pulmonar Aguda/etiologia , Animais , Estudos de Casos e Controles , Células Endoteliais/metabolismo , Endotoxemia/etiologia , Endotoxemia/patologia , Feminino , Humanos , Masculino , Camundongos , Edema Pulmonar/sangue , Edema Pulmonar/etiologia , Edema Pulmonar/patologia , Sepse/etiologia , Sepse/patologia
4.
Eur Respir J ; 57(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32972983

RESUMO

Pulmonary arterial hypertension (PAH) is a destructive disease of the pulmonary vasculature often leading to right heart failure and death. Current therapeutic intervention strategies only slow disease progression. The role of aberrant hypoxia-inducible factor (HIF)2α stability and function in the initiation and development of pulmonary hypertension (PH) has been an area of intense interest for nearly two decades.Here we determine the effect of a novel HIF2α inhibitor (PT2567) on PH disease initiation and progression, using two pre-clinical models of PH. Haemodynamic measurements were performed, followed by collection of heart, lung and blood for pathological, gene expression and biochemical analysis. Blood outgrowth endothelial cells from idiopathic PAH patients were used to determine the impact of HIF2α-inhibition on endothelial function.Global inhibition of HIF2a reduced pulmonary vascular haemodynamics and pulmonary vascular remodelling in both su5416/hypoxia prevention and intervention models. PT2567 intervention reduced the expression of PH-associated target genes in both lung and cardiac tissues and restored plasma nitrite concentration. Treatment of monocrotaline-exposed rodents with PT2567 reduced the impact on cardiovascular haemodynamics and promoted a survival advantage. In vitro, loss of HIF2α signalling in human pulmonary arterial endothelial cells suppresses target genes associated with inflammation, and PT2567 reduced the hyperproliferative phenotype and overactive arginase activity in blood outgrowth endothelial cells from idiopathic PAH patients. These data suggest that targeting HIF2α hetero-dimerisation with an orally bioavailable compound could offer a new therapeutic approach for PAH. Future studies are required to determine the role of HIF in the heterogeneous PAH population.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Células Cultivadas , Células Endoteliais , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Artéria Pulmonar
5.
Thorax ; 75(11): 1020-1023, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32887739

RESUMO

Neutrophils play an important role in the lung tumour microenvironment. We hypothesised that radiolabelled neutrophils coupled to single-photon emission CT (SPECT) may non-invasively quantify neutrophil uptake in tumours from patients with non-small cell lung cancer. We demonstrated increased uptake of radiolabelled neutrophils from the blood into tumours compared with non-specific uptake using radiolabelled transferrin. Moreover, indium-111-neutrophil activity in the tumour biopsies also correlated with myeloperoxidase (MPO)-positive neutrophils. Our data support the utility of imaging with In-111-labelled neutrophils and SPECT-CT to quantify neutrophil uptake in lung cancer.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Neutrófilos , Tomografia Computadorizada de Emissão de Fóton Único , Adulto , Biópsia , Feminino , Humanos , Radioisótopos de Índio , Neoplasias Pulmonares/patologia , Masculino , Estadiamento de Neoplasias
6.
Pulm Circ ; 10(3): 2045894020935783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733669

RESUMO

Pulmonary arterial hypertension is a fatal disorder of the lung circulation in which accumulation of vascular cells progressively obliterates the pulmonary arterioles. This results in sustained elevation in pulmonary artery pressure leading eventually to right heart failure. Approximately, 80% of familial and 20% of sporadic idiopathic pulmonary arterial hypertension cases are caused by mutations in the bone morphogenetic protein receptor type 2 (BMPR2). Nonsense mutations in BMPR2 are amongst the most common mutations found, where the insertion of a premature termination codon causes mRNA degradation via activation of the nonsense-mediated decay pathway leading to a state of haploinsufficiency. Ataluren (PTC124), a compound that permits ribosomal read-through of premature stop codons, has been previously reported to increase BMPR2 protein expression in cells derived from pulmonary arterial hypertension patients harbouring nonsense mutations. In this study, we characterised the effects of PTC124 on a range of nonsense BMPR2 mutations, focusing on the R584X mutation both in vitro and in vivo. Treatment with PTC124 partially restored BMPR2 protein expression in blood outgrowth endothelial cells isolated from a patient harbouring the R584X mutation. Furthermore, a downstream bone morphogenetic protein signalling target, Id1, was rescued by PTC124 treatment. Mutant cells also exhibited increased lipopolysaccharide-induced permeability, which was reversed by PTC124 treatment. Increased proliferation and apoptosis in R584X blood outgrowth endothelial cells were also significantly reduced by PTC124. Moreover, oral PTC124 increased lung BMPR2 protein expression in mice harbouring the R584X mutation (Bmpr2 +/R584X ). Our findings provide support for future experimental medicine studies of PTC124 in pulmonary arterial hypertension patients with specific nonsense BMPR2 mutations.

7.
Sci Transl Med ; 12(543)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404506

RESUMO

Human genetics, biomarker, and animal studies implicate loss of function in bone morphogenetic protein (BMP) signaling and maladaptive transforming growth factor-ß (TGFß) signaling as drivers of pulmonary arterial hypertension (PAH). Although sharing common receptors and effectors with BMP/TGFß, the function of activin and growth and differentiation factor (GDF) ligands in PAH are less well defined. Increased expression of GDF8, GDF11, and activin A was detected in lung lesions from humans with PAH and experimental rodent models of pulmonary hypertension (PH). ACTRIIA-Fc, a potent GDF8/11 and activin ligand trap, was used to test the roles of these ligands in animal and cellular models of PH. By blocking GDF8/11- and activin-mediated SMAD2/3 activation in vascular cells, ACTRIIA-Fc attenuated proliferation of pulmonary arterial smooth muscle cells and pulmonary microvascular endothelial cells. In several experimental models of PH, prophylactic administration of ACTRIIA-Fc markedly improved hemodynamics, right ventricular (RV) hypertrophy, RV function, and arteriolar remodeling. When administered after the establishment of hemodynamically severe PH in a vasculoproliferative model, ACTRIIA-Fc was more effective than vasodilator in attenuating PH and arteriolar remodeling. Potent antiremodeling effects of ACTRIIA-Fc were associated with inhibition of SMAD2/3 activation and downstream transcriptional activity, inhibition of proliferation, and enhancement of apoptosis in the vascular wall. ACTRIIA-Fc reveals an unexpectedly prominent role of GDF8, GDF11, and activin as drivers of pulmonary vascular disease and represents a therapeutic strategy for restoring the balance between SMAD1/5/9 and SMAD2/3 signaling in PAH.


Assuntos
Hipertensão Pulmonar , Ativinas , Animais , Diferenciação Celular , Células Endoteliais , Hipertensão Pulmonar/tratamento farmacológico , Transdução de Sinais
8.
Am J Respir Cell Mol Biol ; 63(2): 160-171, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32255665

RESUMO

Mutations in the gene encoding BMPR2 (bone morphogenetic protein type 2 receptor) are the major cause of heritable pulmonary arterial hypertension (PAH). Point mutations in the BMPR2 ligand-binding domain involving cysteine residues (such as C118W) are causative of PAH and predicted to cause protein misfolding. Using heterologous overexpression systems, we showed previously that these mutations lead to retention of BMPR2 in the endoplasmic reticulum but are partially rescued by chemical chaperones. Here, we sought to determine whether the chemical chaperone 4-phenylbutyrate (4PBA) restores BMPR2 signaling in primary cells and in a knockin mouse harboring a C118W mutation. First, we confirmed dysfunctional BMP signaling in dermal fibroblasts isolated from a family with PAH segregating the BMPR2 C118W mutation. After BMP4 treatment, the induction of downstream signaling targets (Smad1/5, ID1 [inhibitor of DNA binding 1], and ID2) was significantly reduced in C118W mutant cells. Treatment with 4PBA significantly rescued Smad1/5, ID1, and ID2 expression. Pulmonary artery smooth muscle cells isolated from the lungs of heterozygous mice harboring the Bmpr2 C118W mutation exhibited significantly increased proliferation. In the presence of 4PBA, hyperproliferation was dramatically reduced. Furthermore, in vivo, 4PBA treatment of Bmpr2 C118W mice partially rescued Bmpr2 expression, restored downstream signaling, and improved vascular remodeling. These findings demonstrate in primary cells and in a knockin mouse that the repurposed small-molecule chemical chaperone 4PBA might be a promising precision medicine approach to treat PAH in patients with specific subtypes of BMPR2 mutation involving cysteine substitutions in the ligand-binding domain.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Cisteína/genética , Mutação/genética , Compostos Organofosforados/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Humanos , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/efeitos dos fármacos , Transdução de Sinais/genética , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética
9.
J Pathol Clin Res ; 6(1): 40-54, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571426

RESUMO

Whilst adequate for most existing pathological tests, formalin is generally considered a poor DNA preservative and use of alternative fixatives may prove advantageous for molecular testing of tumour material; an increasingly common approach to identify targetable driver mutations in lung cancer patients. We collected paired PAXgene® tissue-fixed and formalin-fixed samples of block-sized tumour and lung parenchyma, Temno-needle core tumour biopsies and fine needle tumour aspirates (FNAs) from non-small cell lung cancer resection specimens. Traditionally processed formalin fixed paraffin wax embedded (FFPE) samples were compared to paired PAXgene® tissue fixed paraffin-embedded (PFPE) samples. We evaluated suitability for common laboratory tests (H&E staining and immunohistochemistry) and performance for downstream molecular investigations relevant to lung cancer, including RT-PCR and next generation DNA sequencing (NGS). Adequate and comparable H&E staining was seen in all sample types and nuclear staining was preferable in PAXgene® fixed Temno tumour biopsies and tumour FNA samples. Immunohistochemical staining was broadly comparable. PFPE samples enabled greater yields of less-fragmented DNA than FFPE comparators. PFPE samples were also superior for PCR and NGS performance, both in terms of quality control metrics and for variant calling. Critically we identified a greater number of genetic variants in the epidermal growth factor receptor gene when using PFPE samples and the Ingenuity® Variant Analysis pipeline. In summary, PFPE samples are adequate for histopathological diagnosis and suitable for the majority of existing laboratory tests. PAXgene® fixation is superior for DNA and RNA integrity, particularly in low-yield samples and facilitates improved NGS performance, including the detection of actionable lung cancer mutations for precision medicine in lung cancer samples.


Assuntos
Biomarcadores Tumorais/análise , Fixadores , Neoplasias Pulmonares , Fixação de Tecidos/métodos , Formaldeído , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imuno-Histoquímica/métodos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos
10.
Nat Commun ; 10(1): 5183, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729368

RESUMO

Pulmonary arterial hypertension (PAH) is a rare but fatal disease. Current treatments increase life expectancy but have limited impact on the progressive pulmonary vascular remodelling that drives PAH. Osteoprotegerin (OPG) is increased within serum and lesions of patients with idiopathic PAH and is a mitogen and migratory stimulus for pulmonary artery smooth muscle cells (PASMCs). Here, we report that the pro-proliferative and migratory phenotype in PASMCs stimulated with OPG is mediated via the Fas receptor and that treatment with a human antibody targeting OPG can attenuate pulmonary vascular remodelling associated with PAH in multiple rodent models of early and late treatment. We also demonstrate that the therapeutic efficacy of the anti-OPG antibody approach in the presence of standard of care vasodilator therapy is mediated by a reduction in pulmonary vascular remodelling. Targeting OPG with a therapeutic antibody is a potential treatment strategy in PAH.


Assuntos
Anticorpos/administração & dosagem , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Osteoprotegerina/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Osteoprotegerina/genética , Ligação Proteica , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Wistar , Remodelação Vascular/efeitos dos fármacos
11.
Br J Pharmacol ; 176(9): 1206-1221, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710493

RESUMO

BACKGROUND AND PURPOSE: Apelin is an endogenous vasodilatory and inotropic peptide that is down-regulated in human pulmonary arterial hypertension, although the density of the apelin receptor is not significantly attenuated. We hypothesised that a G protein-biased apelin analogue MM07, which is more stable than the endogenous apelin peptide, may be beneficial in this condition with the advantage of reduced ß-arrestin-mediated receptor internalisation with chronic use. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats received either monocrotaline to induce pulmonary arterial hypertension or saline and then daily i.p. injections of either MM07 or saline for 21 days. The extent of disease was assessed by right ventricular catheterisation, cardiac MRI, and histological analysis of the pulmonary vasculature. The effect of MM07 on signalling, proliferation, and apoptosis of human pulmonary artery endothelial cells was investigated. KEY RESULTS: MM07 significantly reduced the elevation of right ventricular systolic pressure and hypertrophy induced by monocrotaline. Monocrotaline-induced changes in cardiac structure and function, including right ventricular end-systolic and end-diastolic volumes, ejection fraction, and left ventricular end-diastolic volume, were attenuated by MM07. MM07 also significantly reduced monocrotaline-induced muscularisation of small pulmonary blood vessels. MM07 stimulated endothelial NOS phosphorylation and expression, promoted proliferation, and attenuated apoptosis of human pulmonary arterial endothelial cells in vitro. CONCLUSION AND IMPLICATIONS: Our findings suggest that chronic treatment with MM07 is beneficial in this animal model of pulmonary arterial hypertension by addressing disease aetiology. These data support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.


Assuntos
Receptores de Apelina/agonistas , Modelos Animais de Doenças , Monocrotalina/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Animais , Receptores de Apelina/metabolismo , Masculino , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Eur Respir J ; 53(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30655285

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) is an important consequence of pulmonary embolism that is associated with abnormalities in haemostasis. We investigated the ADAMTS13-von Willebrand factor (VWF) axis in CTEPH, including its relationship with disease severity, inflammation, ABO groups and ADAMTS13 genetic variants.ADAMTS13 and VWF plasma antigen levels were measured in patients with CTEPH (n=208), chronic thromboembolic disease without pulmonary hypertension (CTED) (n=35), resolved pulmonary embolism (n=28), idiopathic pulmonary arterial hypertension (n=30) and healthy controls (n=68). CTEPH genetic ABO associations and protein quantitative trait loci were investigated. ADAMTS13-VWF axis abnormalities were assessed in CTEPH and healthy control subsets by measuring ADAMTS13 activity, D-dimers and VWF multimeric size.Patients with CTEPH had decreased ADAMTS13 (adjusted ß -23.4%, 95% CI -30.9- -15.1%, p<0.001) and increased VWF levels (ß +75.5%, 95% CI 44.8-113%, p<0.001) compared to healthy controls. ADAMTS13 levels remained low after reversal of pulmonary hypertension by pulmonary endarterectomy surgery and were equally reduced in CTED. We identified a genetic variant near the ADAMTS13 gene associated with ADAMTS13 protein that accounted for ∼8% of the variation in levels.The ADAMTS13-VWF axis is dysregulated in CTEPH. This is unrelated to pulmonary hypertension, disease severity or markers of systemic inflammation and implicates the ADAMTS13-VWF axis in CTEPH pathobiology.


Assuntos
Proteína ADAMTS13/genética , Hipertensão Pulmonar/fisiopatologia , Embolia Pulmonar/fisiopatologia , Fator de von Willebrand/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Estudos de Casos e Controles , Doença Crônica , Endarterectomia , Feminino , Humanos , Hipertensão Pulmonar/genética , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Embolia Pulmonar/genética , Trombose/genética , Trombose/fisiopatologia
13.
Commun Biol ; 1: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272025

RESUMO

The integrity of blood vessels is fundamental to vascular homeostasis. Inactivating mutations in the bone morphogenetic protein (BMP) receptor type II (BMPR2) gene cause hereditary vascular disorders, including pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia, suggesting that BMPR2 and its downstream signaling pathway are pivotal to the maintenance of vascular integrity through an unknown molecular mechanism. Here we report that inactivation of BMPR2 in pulmonary vascular endothelial cells results in a deficit of RAD51, an enzyme essential for DNA repair and replication. Loss of RAD51, which causes DNA damage and cell death, is also detected in animal models and human patients with pulmonary arterial hypertension. Restoration of BMPR2 or activation of the BMP signaling pathway rescues RAD51 and prevents DNA damage. This is an unexpected role of BMP signaling in preventing the accumulation of DNA damage and the concomitant loss of endothelial integrity and vascular remodeling associated with vascular disorders.

14.
Am J Physiol Lung Cell Mol Physiol ; 315(6): L977-L990, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30234375

RESUMO

Natural killer (NK) cells are cytotoxic innate lymphoid cells with an established role in the regulation of vascular structure in pregnancy and cancer. Impaired NK cell function has been identified in patients with pulmonary arterial hypertension (PAH), a disease of obstructive vascular remodeling in the lungs, as well as in multiple rodent models of disease. However, the precise contribution of NK cell impairment to the initiation and progression of PAH remains unknown. Here, we report the development of spontaneous pulmonary hypertension in two independent genetic models of NK cell dysfunction, including Nfil3-/- mice, which are deficient in NK cells due to the absence of the NFIL3 transcription factor, and Ncr1-Gfp mice, which lack the NK activating receptor NKp46. Mouse models of NK insufficiency exhibited increased right ventricular systolic pressure and muscularization of the pulmonary arteries in the absence of elevated left ventricular end-diastolic pressure, indicating that the development of pulmonary hypertension was not secondary to left heart dysfunction. In cases of severe NK cell impairment or loss, a subset of mice failed to develop pulmonary hypertension and instead exhibited reduced systemic blood pressure, demonstrating an extension of vascular abnormalities beyond the pulmonary circulation into the systemic vasculature. In both mouse models, the development of PAH was linked to elevated interleukin-23 production, whereas systemic hypotension in Ncr1-Gfp mice was accompanied by a loss of angiopoietin-2. Together, these results support an important role for NK cells in the regulation of pulmonary and systemic vascular function and the pathogenesis of PAH.


Assuntos
Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Células Matadoras Naturais/patologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Pulmão/patologia , Camundongos , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Artéria Pulmonar/patologia , Remodelação Vascular/genética
15.
Pulm Circ ; 8(4): 2045894018801642, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30160594

RESUMO

Increasing evidence suggests that patients with pulmonary arterial hypertension (PAH) demonstrate abnormalities in the bone marrow (BM) and hematopoietic progenitor cells. In addition, PAH is associated with myeloproliferative diseases. We have previously demonstrated that low-dose lipopolysaccharide (LPS) is a potent stimulus for the development of PAH in the context of a genetic PAH mouse model of BMPR2 dysfunction. We hypothesized that the hematopoietic progenitor cells might be driving disease in this model. To test this hypothesis, we performed adoptive transfer of BM between wild-type (Ctrl) and heterozygous Bmpr2 null (Mut) mice. Sixteen weeks after BM reconstitution, mice were exposed to low-dose chronic LPS (0.5 mg/kg three times a week for six weeks). Mice underwent right heart catheterization and tissues were removed for histology. After chronic LPS dosing, Ctrl mice in receipt of Mut BM developed PAH, whereas Mut mice receiving Ctrl BM were protected from PAH. BM histology demonstrated an increase in megakaryocytes and there was an increase in circulating platelets in Ctrl mice receiving Mut BM. These findings demonstrate that the hematopoietic stem cell compartment is involved in the susceptibility to PAH in the Mut mouse. The results raise the possibility that hematopoietic stem cell transplantation might be a potential treatment strategy in genetic forms of PAH.

16.
Nat Commun ; 9(1): 1416, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650961

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis. Deleterious variation within components of the transforming growth factor-ß pathway, particularly the bone morphogenetic protein type 2 receptor (BMPR2), underlies most heritable forms of PAH. To identify the missing heritability we perform whole-genome sequencing in 1038 PAH index cases and 6385 PAH-negative control subjects. Case-control analyses reveal significant overrepresentation of rare variants in ATP13A3, AQP1 and SOX17, and provide independent validation of a critical role for GDF2 in PAH. We demonstrate familial segregation of mutations in SOX17 and AQP1 with PAH. Mutations in GDF2, encoding a BMPR2 ligand, lead to reduced secretion from transfected cells. In addition, we identify pathogenic mutations in the majority of previously reported PAH genes, and provide evidence for further putative genes. Taken together these findings contribute new insights into the molecular basis of PAH and indicate unexplored pathways for therapeutic intervention.


Assuntos
Adenosina Trifosfatases/química , Aquaporina 1/química , Hipertensão Pulmonar Primária Familiar/genética , Fatores de Diferenciação de Crescimento/química , Proteínas de Membrana Transportadoras/química , Mutação , Fatores de Transcrição SOXF/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adulto , Aquaporina 1/genética , Aquaporina 1/metabolismo , Sequência de Bases , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Estudos de Casos e Controles , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/patologia , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Prognóstico , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Sequenciamento Completo do Genoma
17.
Circulation ; 136(21): 2022-2033, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-28972005

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation.


Assuntos
Pressão Arterial/genética , Hipertensão Pulmonar/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Artéria Pulmonar/fisiopatologia , Adulto , Idoso , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Análise Mutacional de DNA , Europa (Continente) , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Hereditariedade , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Valor Preditivo dos Testes , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Tomografia Computadorizada por Raios X , Adulto Jovem
18.
J Pathol ; 243(3): 390-400, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28815607

RESUMO

Glomerular scarring, known as glomerulosclerosis, occurs in many chronic kidney diseases and involves interaction between glomerular endothelial cells (GECs), podocytes, and mesangial cells (MCs), leading to signals that promote extracellular matrix deposition and endothelial cell dysfunction and loss. We describe a 3D tri-culture system to model human glomerulosclerosis. In 3D monoculture, each cell type alters its phenotype in response to TGFß, which has been implicated as an important mediator of glomerulosclerosis. GECs form a lumenized vascular network, which regresses in response to TGFß. MCs respond to TGFß by forming glomerulosclerotic-like nodules with matrix deposition. TGFß treatment of podocytes does not alter cell morphology but increases connective tissue growth factor (CTGF) expression. BMP7 prevents TGFß-induced GEC network regression, whereas TGFß-induced MC nodule formation is prevented by SMAD3 siRNA knockdown or ALK5 inhibitors but not BMP7, and increased phospho-SMAD3 was observed in human glomerulosclerosis. In 3D tri-culture, GECs, podocytes, and MCs form a vascular network in which GECs and podocytes interact intimately within a matrix containing MCs. TGFß treatment induces formation of nodules, but combined inhibition of ALK5 and CTGF is required to prevent TGFß-induced nodule formation in tri-cellular cultures. Identification of therapeutic targets for glomerulosclerosis depends on the 3D culture of all three glomerular cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Glomérulos Renais/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Matriz Extracelular/metabolismo , Humanos , Nefropatias/patologia , Glomérulos Renais/metabolismo , Células Mesangiais/citologia , Receptor do Fator de Crescimento Transformador beta Tipo I
19.
Hum Mol Genet ; 26(8): 1584-1596, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334838

RESUMO

The Asp358Ala variant in the interleukin-6 receptor (IL-6R) gene has been implicated in asthma, autoimmune and cardiovascular disorders, but its role in other respiratory conditions such as chronic obstructive pulmonary disease (COPD) has not been investigated. The aims of this study were to evaluate whether there is an association between Asp358Ala and COPD or asthma risk, and to explore the role of the Asp358Ala variant in sIL-6R shedding from neutrophils and its pro-inflammatory effects in the lung. We undertook logistic regression using data from the UK Biobank and the ECLIPSE COPD cohort. Results were meta-analyzed with summary data from a further three COPD cohorts (7,519 total cases and 35,653 total controls), showing no association between Asp358Ala and COPD (OR = 1.02 [95% CI: 0.96, 1.07]). Data from the UK Biobank showed a positive association between the Asp358Ala variant and atopic asthma (OR = 1.07 [1.01, 1.13]). In a series of in vitro studies using blood samples from 37 participants, we found that shedding of sIL-6R from neutrophils was greater in carriers of the Asp358Ala minor allele than in non-carriers. Human pulmonary artery endothelial cells cultured with serum from homozygous carriers showed an increase in MCP-1 release in carriers of the minor allele, with the difference eliminated upon addition of tocilizumab. In conclusion, there is evidence that neutrophils may be an important source of sIL-6R in the lungs, and the Asp358Ala variant may have pro-inflammatory effects in lung cells. However, we were unable to identify evidence for an association between Asp358Ala and COPD.


Assuntos
Asma/genética , Estudos de Associação Genética , Doença Pulmonar Obstrutiva Crônica/genética , Receptores de Interleucina-6/genética , Asma/sangue , Asma/patologia , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Neutrófilos/metabolismo , Neutrófilos/patologia , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/patologia
20.
Circulation ; 135(12): 1160-1173, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28137936

RESUMO

BACKGROUND: Elabela/toddler (ELA) is a critical cardiac developmental peptide that acts through the G-protein-coupled apelin receptor, despite lack of sequence similarity to the established ligand apelin. Our aim was to investigate the receptor pharmacology, expression pattern, and in vivo function of ELA peptides in the adult cardiovascular system, to seek evidence for alteration in pulmonary arterial hypertension (PAH) in which apelin signaling is downregulated, and to demonstrate attenuation of PAH severity with exogenous administration of ELA in a rat model. METHODS: In silico docking analysis, competition binding experiments, and downstream assays were used to characterize ELA receptor binding in human heart and signaling in cells expressing the apelin receptor. ELA expression in human cardiovascular tissues and plasma was determined using real-time quantitative polymerase chain reaction, dual-labeling immunofluorescent staining, and immunoassays. Acute cardiac effects of ELA-32 and [Pyr1]apelin-13 were assessed by MRI and cardiac catheterization in anesthetized rats. Cardiopulmonary human and rat tissues from PAH patients and monocrotaline- and Sugen/hypoxia-exposed rats were used to show changes in ELA expression in PAH. The effect of ELA treatment on cardiopulmonary remodeling in PAH was investigated in the monocrotaline rat model. RESULTS: ELA competed for binding of apelin in human heart with overlap for the 2 peptides indicated by in silico modeling. ELA activated G-protein- and ß-arrestin-dependent pathways. We detected ELA expression in human vascular endothelium and plasma. Comparable to apelin, ELA increased cardiac contractility, ejection fraction, and cardiac output and elicited vasodilatation in rat in vivo. ELA expression was reduced in cardiopulmonary tissues from PAH patients and PAH rat models, respectively. ELA treatment significantly attenuated elevation of right ventricular systolic pressure and right ventricular hypertrophy and pulmonary vascular remodeling in monocrotaline-exposed rats. CONCLUSIONS: These results show that ELA is an endogenous agonist of the human apelin receptor, exhibits a cardiovascular profile comparable to apelin, and is downregulated in human disease and rodent PAH models, and exogenous peptide can reduce the severity of cardiopulmonary remodeling and function in PAH in rats. This study provides additional proof of principle that an apelin receptor agonist may be of therapeutic use in PAH in humans.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Hormônios Peptídicos/uso terapêutico , Sequência de Aminoácidos , Animais , Apelina , Sítios de Ligação , Cateterismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Humanos , Hipertensão Pulmonar/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/agonistas , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Masculino , Simulação de Dinâmica Molecular , Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA