Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38662335

RESUMO

Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.

2.
Acta Biomater ; 180: 1-17, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604468

RESUMO

This analysis explores the principal regulatory concerns linked to nanomedicines and gene vaccines, including the complexities involved and the perspectives on how to navigate them. In the realm of nanomedicines, ensuring the safety of nanomaterials is paramount due to their unique characteristics and potential interactions with biological systems. Regulatory bodies are actively formulating guidelines and standards to assess the safety and risks associated with nanomedicine products, emphasizing the need for standardized characterization techniques to accurately gauge their safety and effectiveness. Regarding gene vaccines, regulatory frameworks must be tailored to address the distinct challenges posed by genetic interventions, necessitating special considerations in safety and efficacy evaluations, particularly concerning vector design, target specificity, and long-term patient monitoring. Ethical concerns such as patient autonomy, informed consent, and privacy also demand careful attention, alongside the intricate matter of intellectual property rights, which must be balanced against the imperative of ensuring widespread access to these life-saving treatments. Collaborative efforts among regulatory bodies, researchers, patent offices, and the private sector are essential to tackle these challenges effectively, with international cooperation being especially crucial given the global scope of nanomedicine and genetic vaccine development. Striking the right balance between safeguarding intellectual properties and promoting public health is vital for fostering innovation and ensuring equitable access to these ground-breaking technologies, underscoring the significance of addressing these regulatory hurdles to fully harness the potential benefits of nanomedicine and gene vaccines for enhancing healthcare outcomes on a global scale. STATEMENT OF SIGNIFICANCE: Several biomaterials are being proposed for the development of nanovaccines, from polymeric micelles, PLGA-/PEI-/PLL-nanoparticles, solid lipid nananoparticles, cationic lipoplexes, liposomes, hybrid materials, dendrimers, carbon nanotubes, hydrogels, to quantum dots. Lipid nanoparticles (LNPs) have gained tremendous attention since the US Food and Drug Administration (FDA) approval of Pfizer and Moderna's COVID-19 vaccines, raising public awareness to the regulatory challenges associated with nanomedicines and genetic vaccines. This review provides insights into the current perspectives and potential strategies for addressing these issues, including clinical trials. By navigating these regulatory landscapes effectively, we can unlock the full potential of nanomedicine and genetic vaccines using a range of promising biomaterials towards improving healthcare outcomes worldwide.


Assuntos
Nanomedicina , Humanos , Vacinas de DNA/efeitos adversos
4.
J Control Release ; 365: 617-639, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043727

RESUMO

Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.


Assuntos
Gelatina , Nanotubos de Carbono , Humanos , Gelatina/química , Alicerces Teciduais/química , Nanotubos de Carbono/química , Hidrogéis/química , Materiais Biocompatíveis/química , Engenharia Tecidual
5.
Drug Deliv Transl Res ; 14(1): 62-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37566362

RESUMO

The aim of this work was to develop a dense lamellar scaffold, as a biomimetic material with potential applications in the regeneration of tracheal tissue after surgical tumor resection. The scaffolds were produced by plastic compression technique, exploiting the use of total phenolic compounds (TPC) from Psidium guajava Linn as a potential cross-linking agent in a polymeric mixture based on collagen (COL), silk fibroin (SF), and polyethylene glycol 400 (PEG 400). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) confirmed the chemical interactions between the polymers and the cross-linking of TPC between COL and SF. Morphological analyses showed scaffolds with porosity, interconnectivity, and a porous surface structure with a gyroid-like geometry. The analysis of the anisotropic degree resulted in anisotropic structures (0.1% TFC and 0.3% TFC) and an isotropic structure (0.5% TFC). In the mechanical properties, it was evidenced greater resistance for the 0.3% TFC formulation. The addition of TPC percentages did not result in a significant difference (p > 0.05) in swelling capacity and disintegration rate. The results confirmed that TPC were able to modulate the morphological, morphometric, and mechanical properties of scaffolds. Thus, this study describes a potential new material to improve the regeneration of major tracheal structures after surgical tumor removal.


Assuntos
Fibroínas , Neoplasias , Psidium , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fibroínas/química , Colágeno/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Tradit Complement Med ; 13(6): 575-587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020546

RESUMO

Scientific evidence exists about the association between neurological diseases (i.e., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis, depression, and memory loss) and oxidative damage. The increasing worldwide incidence of such diseases is attracting the attention of researchers to find palliative medications to reduce the symptoms and promote quality of life, in particular, in developing countries, e.g., South America and Africa. Among potential alternatives, extracts of Cannabis Sativa L. are suitable for people who have neurological disorders, spasticity, and pain, nausea, resulting from diseases such as cancer and arthritis. In this review, we discuss the latest developments in the use of Cannabis, its subtypes and constituents, extraction methods, and relevant pharmacological effects. Biomedical applications, marketed products, and prospects for the worldwide use of Cannabis Sativa L. extracts are also discussed, providing the bibliometric maps of scientific literature published in representative countries from South America (i.e., Brazil) and Africa (i.e., South Africa). A lack of evidence on the effectiveness and safety of Cannabis, besides the concerns about addiction and other adverse events, has led many countries to act with caution before changing Cannabis-related regulations. Recent findings are expected to increase the social acceptance of Cannabis, while new technologies seem to boost the global cannabis market because the benefits of (-)-trans-delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) use have been proven in several studies in addition to the potential to general new employment.

7.
Int J Nanomedicine ; 18: 6979-6997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026534

RESUMO

Purpose: Cancer is one of the major causes of death worldwide affecting more than 19 million people. Traditional cancer therapies have many adverse effects and often result in unsatisfactory outcomes. Natural flavones, such as apigenin (APG), have demonstrated excellent antitumoral properties. However, they have a low aqueous solubility. To overcome this drawback, APG can be encapsulated in nanostructured lipid carriers (NLC). Therefore, we developed dual NLC encapsulating APG (APG-NLC) with a lipid matrix containing rosehip oil, which is known for its anti-inflammatory and antioxidant properties. Methods: Optimisation, physicochemical characterisation, biopharmaceutical behaviour, and therapeutic efficacy of this novel nanostructured system were assessed. Results: APG-NLC were optimized obtaining an average particle size below 200 nm, a surface charge of -20 mV, and an encapsulation efficiency over 99%. The APG-NLC released APG in a sustained manner, and the results showed that the formulation was stable for more than 10 months. In vitro studies showed that APG-NLC possess significant antiangiogenic activity in ovo and selective antiproliferative activity in several cancer cell lines without exhibiting toxicity in healthy cells. Conclusion: APG-NLC containing rosehip oil were optimised. They exhibit suitable physicochemical parameters, storage stability for more than 10 months, and prolonged APG release. Moreover, APG-NLC were internalised inside tumour cells, showing the capacity to cause cytotoxicity in cancer cells without damaging healthy cells.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Apigenina , Lipídeos/química , Portadores de Fármacos/química , Nanoestruturas/química , Antioxidantes/química , Tamanho da Partícula , Neoplasias/tratamento farmacológico
8.
Int J Pharm ; 647: 123535, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37865132

RESUMO

Wound healing is a natural physiological reaction to tissue injury. Hydrogels show attractive advantages in wound healing not only due to their biodegradability, biocompatibility and permeability but also because provide an excellent environment for cell migration and proliferation. The main objective of the present study was the design and characterization of a hydrogel loaded with human mesenchymal stromal cells (hMSCs) for use in would healing of superficial skin injures. Poloxamer 407® was used as biocompatible biomaterial to embed hMSCs. The developed hydrogel containing 20 % (w/w) of polymer resulted in the best formulation with respect to physical, mechanical, morphological and biological properties. Its high swelling capacity confirmed the hydrogel's capacity to absorb wounds' exudate. LIVE/DEAD® assay confirm that hMSCs remained viable for at least 48 h when loaded into the hydrogels. Adding increasing concentrations of hMSCs-loaded hydrogel to the epithelium did not affect keratinocytes' viability and healing capacity and all wound area was closed in less than one day. Our study opens opportunities to exploit poloxamer hydrogels as cell carriers for the treatment of skin superficial wound.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Poloxâmero , Cicatrização , Pele
9.
Chem Biodivers ; 20(10): e202300083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681514

RESUMO

This work describes a new hair dyeing methodology using a chemical reaction between geniposide, an iridoid glycoside extracted from the fruit of Genipa americana (geniposide extract, GE) and the amine group of hair keratin. The influence of reaction conditions (pH, temperature, and extract concentration) on the staining of hair fibers, color development, fiber morphology, and mechanical hair properties of black and white human hair samples, was evaluated before and after GE dyeing treatment. Eye contact safety of GE was also studied using HET-CAM. The treatment of white hair fibers using GE at 20 mg mL-1 , temperature of 80 °C and pH 5.5 presented the greatest color change (ΔE=54.0). The higher pH influence was observed at pH 10.0 on white hair tresses (ΔE=6.8), using an GE concentration of 20 mg mL-1 and room temperature (25 °C). Treated samples showed marked changes on mechanical and morphological properties. The HET-CAM did not show any change, thus demonstrating that using GE is safe. In conclusion, the temperature and concentration of the extract were the variables that mostly influenced the color and hair damage. A new approach for hair dyeing was established where iridoids may potentially be useful as a natural hair dyeing.

10.
Curr Pharm Des ; 29(28): 2191-2203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37723628

RESUMO

The high levels of antibiotic resistance registered worldwide have become a serious health problem, threatening the currently available treatments for a series of infectious diseases. With antibiotics becoming less and less effective, it is becoming increasingly difficult and, in some cases, impossible to treat patients with even common infectious diseases, such as pneumonia. The inability to meet the ever-increasing demand to control microbial infection requires both the search for new antimicrobials and improved site-specific delivery. On the one hand, bacterial secondary metabolites are known for their diverse structure and antimicrobial potential and have been in use for a very long time in diverse sectors. A good deal of research is produced annually describing new molecules of bacterial origin with antimicrobial properties and varied applications. However, very few of these new molecules reach the clinical phase and even fewer are launched in the market for use. In this review article, we bring together information on these molecules with potential for application, in particular, for human and veterinary medicine, and the potential added value of the use of liposomes as delivery systems for site-specific delivery of these drugs with the synergistic effect to overcome the risk of antibiotic resistance.

11.
Inflammopharmacology ; 31(5): 2505-2519, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639162

RESUMO

The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of ethyl acetate extract obtained from the leaves of Brazilian peppertree Schinus terebinthifolius Raddi (EAELSt). Total phenols and flavonoids, chemical constituents, in vitro antioxidant activity (DPPH and lipoperoxidation assays), and cytotoxicity in L929 fibroblasts were determined. In vivo anti-inflammatory and antioxidant properties were evaluated using TPA-induced ear inflammation model in mice. Phenol and flavonoid contents were 19.2 ± 0.4 and 93.8 ± 5.2 of gallic acid or quercetin equivalents/g, respectively. LC-MS analysis identified 43 compounds, of which myricetin-O-pentoside and quercetin-O-rhamnoside were major peaks of chromatogram. Incubation with EAELSt decreased the amount of DPPH radical (EC50 of 54.5 ± 2.4 µg/mL) and lipoperoxidation at 200-500 µg/mL. The incubation with EAELSt did not change fibroblast viability up to 100 µg/mL. Topical treatment with EAELSt significantly reduced edema and myeloperoxidase activity at 0.3, 1, and 3 mg/ear when compared to the vehicle-treated group. In addition, EAELSt decreased IL-6 and TNF-α levels and increased IL-10 levels. Besides, it modulated markers of oxidative stress (reduced total hydroperoxides and increased sulfhydryl contents and ferrium reduction potential) and increased the activity of catalase and superoxide dismutase, without altering GPx activity.


Assuntos
Anacardiaceae , Antioxidantes , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Schinus , Quercetina , Brasil , Anacardiaceae/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Folhas de Planta/química
12.
Drug Deliv Transl Res ; 13(12): 3223-3238, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37474880

RESUMO

Gelatin-based photopolymerizable methacrylate hydrogel (GelMA) is a promising biomaterial for in situ drug delivery, while aqueous extract of Punica granatum (AEPG) peel fruit rich in gallic acid and ellagic acid is used to improve wound healing. The aim of this study was to develop and analyze the healing properties of GelMA containing AEPG, gallic acid, or ellagic acid in a rodent model. GelMA hydrogels containing 5% AEPG (GelMA-PG), 1.6% gallic acid (GelMA-GA), or 2.1% ellagic acid (GelMA-EA) were produced and their mechanical properties, enzymatic degradation, and thermogravimetric profile determined. Wound closure rates, healing histological grading, and immunohistochemical counts of myofibroblasts were assessed over time. The swelling of hydrogels varied between 50 and 90%, and GelMA exhibited a higher swelling than the other groups. The GPG samples showed higher compression and Young's moduli than GelMA, GGA, and GAE. All samples degraded around 95% in 48 h. GPG and GGA significantly accelerated wound closure, improved collagenization, increased histological grading, and hastened myofibroblast differentiation in comparison to the control, GelMA, and GEA. GelMA containing AEPG (GPG) improved wound healing, and although gallic acid is the major responsible for such biological activity, a potential synergic effect played by other polyphenols present in the extract is evident.


Assuntos
Gelatina , Hidrogéis , Hidrogéis/química , Gelatina/química , Ácido Elágico/farmacologia , Cicatrização , Ácido Gálico , Metacrilatos/química
13.
J Control Release ; 359: 207-223, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286137

RESUMO

Scaffolds are implants commonly used to deliver cells, drugs, and genes into the body. Their regular porous structure ensures the proper support for cell attachment, proliferation, differentiated function, and migration. Techniques to fabricate a scaffold include leaching, freeze-drying, supercritical fluid technology, thermally induced phase separation, rapid prototyping, powder compaction, sol-gel, and melt molding. Gene delivery from the scaffold represents a versatile approach to influence the environment for managing cell function. Scaffolds can be used for various tissue engineering purposes, e.g. bone formation, periodontal regeneration, cartilage development, artificial corneas, heart valves, tendon repair, or ligament replacement. Moreover, they are also instrumental in cancer therapy, inflammation, diabetes, heart disease, and wound dressings. Scaffolds provide a platform to extend the delivery of drugs and genetic materials at a controlled timeframe, besides potentially being used to prevent infection upon surgery and other chronic diseases, provided that they can be formulated with specific medicines. This review discusses the need to design advanced functional scaffolds with the potential for modified drug delivery and tissue engineering in a synergistic approach. Special attention is given to works published in 2023 to generate the bibliometric map.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Osteogênese
14.
J Pers Med ; 13(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37109021

RESUMO

Oxidation of lipids and lipoproteins contributes to inflammation processes that promote the development of eye diseases. This is a consequence of metabolism dysregulation; for instance, that of the dysfunctional peroxisomal lipid metabolism. Dysfunction of lipid peroxidation is a critical factor in oxidative stress that causes ROS-induced cell damage. Targeting the lipid metabolism to treat ocular diseases is an interesting and effective approach that is now being considered. Indeed, among ocular structures, retina is a fundamental tissue that shows high metabolism. Lipids and glucose are fuel substrates for photoreceptor mitochondria; therefore, retina is rich in lipids, especially phospholipids and cholesterol. The imbalance in cholesterol homeostasis and lipid accumulation in the human Bruch's membrane are processes related to ocular diseases, such as AMD. In fact, preclinical tests are being performed in mice models with AMD, making this area a promising field. Nanotechnology, on the other hand, offers the opportunity to develop site-specific drug delivery systems to ocular tissues for the treatment of eye diseases. Specially, biodegradable nanoparticles constitute an interesting approach to treating metabolic eye-related pathologies. Among several drug delivery systems, lipid nanoparticles show attractive properties, e.g., no toxicological risk, easy scale-up and increased bioavailability of the loaded active compounds. This review analyses the mechanisms involved in ocular dyslipidemia, as well as their ocular manifestations. Moreover, active compounds as well as drug delivery systems which aim to target retinal lipid metabolism-related diseases are thoroughly discussed.

15.
Toxics ; 11(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112602

RESUMO

Medicinal plants have been commonly associated with chemotherapeutic treatments, as an approach to reduce the toxicological risks of classical anticancer drugs. The objective of this study was to evaluate the effects of combining the antineoplastic drug 5-fluorouracil (5-FU) with Matricaria recutita flowers extract (MRFE) to treat mice transplanted with sarcoma 180. Tumor inhibition, body and visceral mass variation, biochemical, hematological, and histopathological parameters were evaluated. The isolated 5-FU, 5-FU+MRFE 100 mg/kg/day, and 5-FU+MRFE 200 mg/kg/day reduced tumor growth; however, 5-FU+MRFE 200 mg/kg/day showed a more significant tumor reduction when compared to 5-FU alone. These results corroborated with the analysis of the tumor histopathological and immunodetection of the Ki67 antigen. In the toxicological analysis of the association 5-FU+MRFE 200 mg/kg/day, an intense loss of body mass was observed, possibly as a result of diarrhea. In addition, spleen atrophy, with a reduction in white pulp, leukopenia and thrombocytopenia, was observed in the 5-FU groups alone and associated with MRFE 200 mg/kg/day; however, there was no statistical difference between these groups. Therefore, the MRFE 200 mg/kg/day did not interfere in myelosuppressive action of 5-FU. In hematological analysis, body and visceral mass variation and biochemical parameters related to renal (urea and creatinine) and cardiac (CK-MB) function, no alteration was observed. In biochemical parameters related to liver function enzymes, there was a reduction in aspartate transaminase (AST) values in the 5-FU groups alone and associated with MRFE 200 mg/kg/day; however, there was no statistical difference between these groups. Therefore, the MRFE 200 mg/kg/day does not appear to influence enzyme reduction. The results of this study suggest that the association between the 5-FU+MRFE 200 can positively interfere with the antitumor activity, promoting the antineoplastic-induced reduction in body mass, while minimizing the toxicity of chemotherapy.

16.
Int J Pharm ; 639: 122982, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37116598

RESUMO

Licochalcone-A (Lico-A) PLGA NPs functionalized with cell penetrating peptides B6 and Tet-1 are proposed for the treatment of ocular anti-inflammatory diseases. In this work, we report the in vitro biocompatibility of cell penetrating peptides-functionalized Lico-A-loaded PLGA NPs in Caco-2 cell lines revealing a non-cytotoxic profile, and their anti-inflammatory activity against RAW 264.7 cell lines. Given the risk of hydrolysis of the liquid suspensions, freeze-drying was carried out testing different cryoprotectants (e.g., disaccharides, alcohols, and oligosaccharide-derived sugar alcohol) to prevent particle aggregation and mitigate physical stress. As the purpose is the topical eye instillation of the nanoparticles, to reduce precorneal wash-out, increase residence time and thus Lico-A bioavailability, an in-situ forming gel based on poloxamer 407 containing Lico-A loaded PLGA nanoparticles functionalized with B6 and Tet-1 for ocular administration has been developed. Developed formulations remain in a flowing semi-liquid state under non-physiological conditions and transformed into a semi-solid state under ocular temperature conditions (35 °C), which is beneficial for ocular administration. The pH, viscosity, texture parameters and gelation temperature results met the requirements for ophthalmic formulations. The gel has characteristics of viscoelasticity, suitable mechanical and mucoadhesive performance which facilitate its uniform distribution over the conjunctiva surface. In conclusion, we anticipate the potential clinical significance of our developed product provided that a synergistic effect is achieved by combining the high anti-inflammatory activity of Lico-A delivered by PLGA NPs with B6 and Tet-1 for site-specific targeting in the eye, using an in-situ forming gel.


Assuntos
Peptídeos Penetradores de Células , Nanopartículas , Humanos , Células CACO-2 , Anti-Inflamatórios , Nanopartículas/química , Olho
17.
Front Immunol ; 14: 1147991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033914

RESUMO

Commonly used clinical strategies against coronavirus disease 19 (COVID-19), including the potential role of monoclonal antibodies for site-specific targeted drug delivery, are discussed here. Solid lipid nanoparticles (SLN) tailored with tocilizumab (TCZ) and loading cannabidiol (CBD) are proposed for the treatment of COVID-19 by oral route. TCZ, as a humanized IgG1 monoclonal antibody and an interleukin-6 (IL-6) receptor agonist, can attenuate cytokine storm in patients infected with SARS-CoV-2. CBD (an anti-inflammatory cannabinoid and TCZ agonist) alleviates anxiety, schizophrenia, and depression. CBD, obtained from Cannabis sativa L., is known to modulate gene expression and inflammation and also shows anti-cancer and anti-inflammatory properties. It has also been recognized to modulate angiotensin-converting enzyme II (ACE2) expression in SARS-CoV-2 target tissues. It has already been proven that immunosuppressive drugs targeting the IL-6 receptor may ameliorate lethal inflammatory responses in COVID-19 patients. TCZ, as an immunosuppressive drug, is mainly used to treat rheumatoid arthritis, although several attempts have been made to use it in the active hyperinflammatory phase of COVID-19, with promising outcomes. TCZ is currently administered intravenously. It this review, we discuss the potential advances on the use of SLN for oral administration of TCZ-tailored CBD-loaded SLN, as an innovative platform for managing SARS-CoV-2 and related infections.


Assuntos
COVID-19 , Canabidiol , Humanos , SARS-CoV-2 , Canabidiol/uso terapêutico , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/uso terapêutico , Imunossupressores
18.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985847

RESUMO

Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) are receiving increasing interest as an approach to encapsulate natural extracts to increase the physicochemical stability of bioactives. Cannabis extract-derived cannabidiol (CBD) has potent therapeutic properties, including anti-inflammatory, antioxidant, and neuroprotective properties. In this work, physicochemical characterization was carried out after producing Compritol-based nanoparticles (cSLN or cNLC) loaded with CBD. Then, the determination of the encapsulation efficiency (EE), loading capacity (LC), particle size (Z-Ave), polydispersity index (PDI), and zeta potential were performed. Additionally, the viscoelastic profiles and differential scanning calorimetry (DSC) patterns were recorded. As a result, CBD-loaded SLN showed a mean particle size of 217.2 ± 6.5 nm, PDI of 0.273 ± 0.023, and EE of about 74%, while CBD-loaded NLC showed Z-Ave of 158.3 ± 6.6 nm, PDI of 0.325 ± 0.016, and EE of about 70%. The rheological analysis showed that the loss modulus for both lipid nanoparticle formulations was higher than the storage modulus over the applied frequency range of 10 Hz, demonstrating that they are more elastic than viscous. The crystallinity profiles of both CBD-cSLN (90.41%) and CBD-cNLC (40.18%) were determined. It may justify the obtained encapsulation parameters while corroborating the liquid-like character demonstrated in the rheological analysis. Scanning electron microscopy (SEM) study confirmed the morphology and shape of the developed nanoparticles. The work has proven that the solid nature and morphology of cSLN/cNLC strengthen these particles' potential to modify the CBD delivery profile for several biomedical applications.


Assuntos
Canabidiol , Canabinoides , Nanopartículas , Lipídeos/química , Portadores de Fármacos/química , Nanopartículas/química , Tamanho da Partícula , Varredura Diferencial de Calorimetria
19.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839993

RESUMO

Traditional medicine uses resin oils extracted from plants of the genus Copaifera for several purposes. Resin oils are being studied to understand and profile their pharmacological properties. The aim of this work was to prepare and to characterize conventional and pegylated liposomes incorporating resin oils or the hexanic extract obtained from Copaifera sabulicola (copaiba) leaves. The cytotoxic effect of these products was also investigated. Conventional and stealth liposomes with copaiba extract showed similar average diameters (around 126 nm), encapsulation efficiencies greater than 75% and were stable for 90 days. A cytotoxicity test was performed on murine glioma cells and the developed liposomes presented antiproliferative action against these cancer cells at the average concentration of 30 µg/mL. Phytochemicals encapsulated in PEGylated liposomes induced greater reduction in the viability of tumor cells. In addition, bioassay-s measured the cytotoxicity of copaiba resin oil (Copaifera sabulicola) in liposomes (conventional and PEGylated), which was also checked against pheochromocytoma PC12 cells. Its safety was verified in normal rat astrocytes. The results indicate that liposomes encapsulating copaiba oil showed cytotoxic activity against the studied tumor strains in a dose-dependent fashion, demonstrating their potential applications as a chemotherapeutic bioactive formulation.

20.
Int J Biol Sci ; 19(3): 721-743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778117

RESUMO

Extracellular vesicles are secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Their molecular cargo reflects the physiological processes that their cells of origin are undergoing. Thus, many studies have suggested that extracellular vesicles could be a promising biomarker tool for many diseases, mainly due to their biological relevance and easy accessibility to a broad range of body fluids. Moreover, since their biological composition leads them to cross the blood-brain barrier bidirectionally, growing evidence points to extracellular vesicles as emerging mirrors of brain diseases processes. In this regard, this review explores the biogenesis and biological functions of extracellular vesicles, their role in different physiological and pathological processes, their potential in clinical practice, and the recent outstanding studies about the role of exosomes in major human brain diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or brain tumors.


Assuntos
Doença de Alzheimer , Exossomos , Vesículas Extracelulares , Doença de Parkinson , Humanos , Barreira Hematoencefálica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA