Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 75(5): 1177-1186, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37698830

RESUMO

BACKGROUND: Obesity is a multifactorial disease with epigenetic manifestations that increases the prevalence of associated comorbidities such as metabolic syndrome, cardiovascular dysfunction, and major depression disorder. Given the aforementioned, a search for new pharmacological alternatives for the treatment of this disease is necessary. The current study aimed to evaluate the effects of histone deacetylase-3 (HDAC3) inhibition caused by RGFP966 (a benzamide-type HDAC inhibitor selective for HDAC3) administration, in an animal model of obesity induced by high-fat diet (HFD). METHODS: Adult male mice C57BJ/6 were fed with a normal pellet diet (NPD) or HFD for 120 days. The HDAC3 inhibitor (RGFP966; 10 mg/kg; sc) was administered on the 91st to 120th day of the experiment (per 30 days). After the last inhibitor administration, animals were euthanized, blood was collected, and the hippocampus was removed for biochemical determinations. RESULTS: In an overall manner, the administration of RGFP966 protected against changes in body weight gain, glucose, insulin, lipid profile, adipokines, and increase of hippocampal proinflammatory cytokines levels caused by HFD. CONCLUSION: Therefore, HDAC3 inhibition can represent a promising pharmacological target for the treatment of obesity.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 393(11): 2129-2137, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32601847

RESUMO

The aim of the present study was to assess the possible protective effect of γ-oryzanol (ORY) supplementation in a model of acute liver failure (ALF) induced by acetaminophen (APAP) in mice. Male Swiss strain mice were supplemented with ORY (10 and 50 mg/kg, per oral route) daily for 7 days. One hour after the last supplementation, animals received APAP (300 mg/kg, intraperitoneal). Twenty-four hours after APAP administration, mice were euthanized, and biochemical and histopathological determinations were performed. Histopathological analysis revealed that APAP caused vascular congestion, loss of cellular structure, and cellular infiltration in hepatocytes. Moreover, it caused oxidative damage (enzymatic and non-enzymatic analysis of oxidative stress), with loss of hepatic function leading to cell apoptosis (apoptotic parameters). ORY supplementation (ORY-10 and ORY-50) protected against all changes in ALF model. Thus, the protective effect of ORY supplementation was due to modulation of antioxidant defenses avoiding the apoptotic process.


Assuntos
Antioxidantes/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Falência Hepática Aguda/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenilpropionatos/farmacologia , Acetaminofen , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Masculino , Camundongos , Transdução de Sinais
3.
J Neuroimmunol ; 335: 577007, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376787

RESUMO

We investigated the effects of chrysin in the experimental autoimmune encephomyelitis (EAE), a multiple sclerosis (MS) animal model. EAE was induced using myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide in C57BL/6 mice. Chrysin reduced weight loss, attenuated clinical signs and blunted the EAE-induced increase in histone deacetylase (HDCA) activity, glycogen synthase kinase-3ß (GSK-3ß) levels and pro-inflammatory cytokine levels as well as in the EAE-induced decrease in histone acetyltransferases 3 and 4 (HAT3, HAT4). Altogether, results demonstrate beneficial effects and potential targets of chrysin in EAE.


Assuntos
Anti-Inflamatórios/farmacologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Flavonoides/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Pathophysiology ; 26(2): 137-143, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31040041

RESUMO

Some studies have showed that intake of blackberry juice (BBJ) can prevent urinary tract infections. However, there is a lack of studies that evaluate the mechanisms by which BBJ has protective effect. Thus, the aim of current study was to evaluate the effects of BBJ supplementation on cisplatin-induced renal pathophysiology in mice. Mice were supplemented with BBJ (10 mL/kg) for seven days. One hour after the last supplementation with BBJ, mice received cisplatin (10 mg/kg, i.p.). Seventy-two hours after cisplatin administration, blood was collected and biochemical analysis were performed (urea and creatinine), kidney was dissected and utilized in histological and oxidative evaluations. Cisplatin caused severe injury in renal tissue, in markers of renal damage (urea and creatinine) generated increased of plasmatic levels. Besides that, the cisplatin induced decreased of enzymes activities in renal tissue (superoxide dismutase, glutathione S-transferase and catalase). In contrast, BBJ supplementation protected against histopathological alterations through decreased in urea and creatinine levels and modulation of catalase enzyme activity. Thus, BBJ supplementation protected the renal system of mice from deleterious effects. We suggest that high concentrations of Cyanidin 3-O-glucoside and Cyanidin 3-O-rutinoside are responsible for antioxidant role of BBJ supplementation in renal pathophysiology induced by cisplatin exposure. Also, these results reinforcing the importance of including BBJ in the human diet aimed at preventing renal diseases.

5.
Toxicon ; 165: 13-21, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004610

RESUMO

The mycotoxin zearalenone (ZEA) has strong estrogenic effects and elicits reproductive toxicity. Chrysin is a natural flavonoid found in many plant and has a broad range of pharmacological activities, including anticancer, antioxidant and anti-inflammatory. The present study aimed to investigate the potential protective effects of chrysin against ZEA toxicity. Mice received chrysin (5 or 20 mg/kg; i.g.) for ten days, and then received a single injection of ZEA (40 mg/kg). Two days thereafter, blood and testes were collected. ZEA decreased number and motility of sperm, plasma testosterone levels, enzymatic (glutathione peroxidase, glutathione reductase, glutathione-S-transferase) and non-enzimatic defenses (reduced glutathione). Moreover, ZEA increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine levels, myeloperoxidase activity and levels of proinflammatory cytokines (interleukins-1ß and 6, tumor necrosis factor alpha). ZEA also decreased levels of anti-inflammatory cytokine interleukin-10 and increased activity of caspases 3 and 9. Chrysin treatment increased the number and motility of sperm, testosterone levels, restored antioxidant defenses and reduced the inflammation and apoptosis process. In summary, chrysin attenuated the toxic effects caused by ZEA in blood and testes of mice, suggesting a potential preventive treatment against the deleterious effects of ZEA.


Assuntos
Fertilidade/efeitos dos fármacos , Flavonoides/farmacologia , Substâncias Protetoras/farmacologia , Zearalenona/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Flavonoides/química , Masculino , Camundongos , Motilidade dos Espermatozoides/efeitos dos fármacos , Testosterona/sangue
6.
Chem Biol Interact ; 293: 28-37, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30053448

RESUMO

Sickness behavior is a normal immune response of body to fight infection, accompanied by endocrine and behavioral alterations. Lipopolysaccharide (LPS) causes sickness behavior in rodents through the increase of proinflammatory cytokines, generating peripheral inflammation and thus overactivation of kynurenine pathway (KP). In the present study we investigated the effects of dietary hydrogenated vegetable fat (HVF) in sickness behavior induced by LPS in aged mice. Male C57BJ/6 aged mice received a supplementation with HVF for six months. After HVF supplementation mice were treated with LPS (0.15 mg/kg; i. p. injection). Twenty-four hours post LPS injection mice were submitted to behavioral tests and then, the hippocampus, striatum and prefrontal cortex were removed for neurochemical determinations. Our results showed that dietary HVF did not exacerbate the behavioral alterations induced by LPS. Although HVF did not modulate the proinflammatory cytokines analyzed, it caused a potentiation in the increase of brain tumor necrosis factor-alpha levels induced by LPS. Moreover, dietary HVF aggravated LPS-induced KP activation in the brain of mice, mainly by further increase of neurotoxic metabolite quinolinic acid and further decrease of kynurenic acid/kynurenine ratio, a marker of neuroprotective branch of KP. Overall, our study demonstrated that dietary HVF did not worsen the sickness behavioral induced by LPS administration. However, HVF aggravated the activation of KP and exacerbated the shift of KP metabolism towards the neurotoxic branch.


Assuntos
Gorduras na Dieta , Cinurenina/metabolismo , Verduras/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corticosterona/sangue , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/análise , Ácido Cinurênico/análise , Cinurenina/análise , Quinurenina 3-Mono-Oxigenase/metabolismo , Lipopolissacarídeos/toxicidade , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Transaminases/metabolismo , Triptofano/análise , Fator de Necrose Tumoral alfa/análise
7.
J Nutr Biochem ; 58: 37-48, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29870875

RESUMO

Sickness behavior is an expression of a central motivational state triggered by activation of the immune system, being considered a strategy of the organism to fight infection. Sickness behavior is induced by peripheral administration of lipopolysaccharide (LPS). LPS can increase the levels of proinflammatory cytokines, which induce the activation of the kynurenine pathway (KP) and behavioral alterations. Previous studies have shown that omega-3 (n-3) polyunsaturated fatty acid (PUFA) has anti-inflammatory properties. Because of this, the purpose of the present study was to evaluate the protective effect of fish oil (FO) supplementation against LPS-induced sickness behavior in aged mice with respect to anhedonia, locomotor activity and body weight. Moreover, we evaluated the ability of FO treatment on the regulation of neuroinflammation (levels of interleukin-1ß, interleukin-6, tumor factor necrosis-α and interferon-γ), KP biomarkers (levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine and quinolinic acid and activities of indoleamine-2,3-dioxygenase, kynurenine monooxygenase and kynurenine aminotransferase) and serotonergic system (levels of serotonin and 5-hydroxyindoleactic acid) in the hippocampus, striatum and prefrontal cortex of LPS-treated mice. We found that FO prevented the LPS-mediated body weight loss, anhedonic behavior, reduction of locomotor activity, up-regulation of the proinflammatory cytokines and serotoninergic alterations. We also found that FO was effective in modulating the KP biomarkers, inhibiting or attenuating KP dysregulation induced by LPS. Together, our results indicated that FO may have beneficial effects on LPS induced sickness-behavior in aged mice either by modulating central inflammation, KP and serotonergic signaling (indirectly effect) or by fatty acids incorporation into neuronal membranes (direct effect).


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Encéfalo/efeitos dos fármacos , Óleos de Peixe/farmacologia , Cinurenina/metabolismo , Anedonia/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
8.
Mol Cell Neurosci ; 88: 93-106, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29369791

RESUMO

An increasing body of evidence indicates that the activation of indoleamine-2,3-dyoxigenase (IDO), a first and rate-limiting enzyme in the kynurenine (KYN) pathway, is involved in Aß1-42-neurotoxicity and AD pathogenesis. We have reported for the first time that brain IDO activation is related to Aß1-42 exposure in young mice. Because aging is characterized by a brain dyshomeostasis and because it remains the most dominant risk factor for AD, the purpose of this study was to determine whether aging is associated with a higher sensitivity to behavioural and neurochemical alterations elicited by an intracerebroventricular (i.c.v.) injection of Aß1-42 (400 pmol/mice), and whether KYN pathway is involved in these effects. We confirmed that aged mice displayed higher cognitive deficit in the object recognition test and higher anxiety-like behaviour in the elevated plus-maze and open field tests after the Aß1-42 administration. Aged mice also responded to Aß1-42 with a higher deficiency of brain-derived neurotrophic factor, glutathione levels and total radical-trapping antioxidant capacity, a higher IDO activity, and a higher KYN and KYN/tryptophan ratio in the prefrontal cortex and hippocampus. These effects of Aß1-42 were associated with a higher proinflammatory status, as measured by higher levels of interleukin-6, lower levels of interleukin-10 and higher expression of glial fibrillary acidic protein (GFAP) and allograft inflammatory factor 1 (Iba1) in the brain of aged mice. These results represent primary evidence suggesting that age-associated inflammatory signature and down-regulation of neuroprotectants in the brain render aged mice more vulnerable to Aß1-42-induced memory loss, anxiety symptoms and KYN pathway dysregulation.


Assuntos
Envelhecimento/fisiologia , Peptídeos beta-Amiloides/metabolismo , Ansiedade/fisiopatologia , Cognição/fisiologia , Transtornos da Memória/fisiopatologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Córtex Pré-Frontal/metabolismo
9.
Neurochem Res ; 42(10): 2982-2995, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28631232

RESUMO

There is a lack of information concerning the molecular events underlying the depressive-like effect of an intracerebroventricular injection of streptozotocin (ICV-STZ) in mice. The elevated activity of the tryptophan-degrading enzyme indoleamine-2,3-dioxygenase (IDO) has been proposed to mediate depression in inflammatory disorders. In the present study, we reported that ICV-STZ activates IDO in the hippocampus of mice and culminates in depressive-like behaviors, as measured by the increased duration of immobility in the tail suspension test and decreased sucrose intake in the sucrose preference test. The blockade of IDO activation by the IDO inhibitor 1-methyltryptophan (1-MT) prevents the development of depressive-like behaviors and attenuates STZ-induced up-regulation of proinflammatory cytokines in the hippocampus. 1-MT abrogates kynurenine production and normalizes brain-derived neurotrophic factor (BDNF) and the kynurenine/tryptophan ratio, but does not protect the biomarkers of the serotonin (5-HT) system in the hippocampus of STZ-injected mice. These results implicate IDO as a critical molecular mediator of STZ-induced depressive-like behavior, likely through activation of the kynurenine pathway and subsequent reduction of BDNF levels. Impairment of the 5-HT system may reflect the inflammatory response induced by STZ and also contributes to observed depression symptoms. The present study not only provides evidence that IDO plays a critical role in mediating inflammation-induced depression but also supports the notion that neuroinflammation and the kynurenine pathway are important targets for novel therapeutic drugs for depression. In addition, this study provides new insights on the neurobiological mechanisms underlying ICV-STZ and indicates that this model could be employed in preclinical research of depression.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estreptozocina/farmacologia , Animais , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Cinurenina/efeitos dos fármacos , Cinurenina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Serotonina/metabolismo
10.
Behav Brain Res ; 331: 1-13, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28502732

RESUMO

Emerging evidence indicates that the activation of indoleamine-2,3-dioxygenase (IDO), a first and rate-limiting enzyme in the kynurenine (KYN) pathway, is involved in amyloid-beta (Aß1-42)-neurotoxicity and Alzheimer's disease (AD) pathogenesis. Physical exercise has been considered an effective intervention in AD, attenuating or limiting their progression. Nevertheless, the neurobiological mechanisms underlying the neuroprotective effects of exercise have not yet been fully elucidated. In present study, we investigated the protective effect of an 8-week swimming training (ST) exercise on cognitive and non-cognitive functions and its role in modulating biomarkers of KYN pathway, before an intracerebroventricular (i.c.v.) injection of Aß1-42 (400pmol/animal; 3µl/site) peptide in mice. Our results demonstrated that ST was effective in preventing the following behavioural disturbances caused by Aß1-42 injection: memory impairment in the object recognition test and depressive/anxiety-like behaviour in the tail suspension test and elevated plus-maze test, respectively. ST abrogated the neuroinflammatory response and neurotrophic deficiency in the prefrontal cortex and hippocampus induced by Aß1-42. Also, Aß1-42 increased IDO activity, KYN and tryptophan (TRP) levels and KYN:TRP ratio in the prefrontal cortex and hippocampus - alterations that were blocked by ST. It can be concluded that ST prevented behavioural and neurobiological deficits induced by Aß1-42, and suggest that these neuroprotective effects are likely to involve the inhibition of inflammation/IDO activation and up-regulation of neurotrophic factors in brain of mice. Thus, it is possible that physical exercise can be used as a non-pharmacological approach to alleviates both cognitive and non-cognitive symptoms of AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Comportamento Animal/efeitos dos fármacos , Citocinas/metabolismo , NF-kappa B/metabolismo , Fragmentos de Peptídeos/farmacologia , Natação , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/administração & dosagem , Condicionamento Físico Animal , Natação/fisiologia
11.
Neurotox Res ; 31(4): 464-477, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28155213

RESUMO

There is a lack of information about the molecular events underlying the depressive-like effect of an intracerebroventricular injection of streptozotocin (ICV-STZ) in mice. Elevated activity of the tryptophan-degrading enzyme indoleamine-2,3-dioxygenase (IDO) has been proposed to mediate depression in inflammatory disorders. In this study, we report that ICV-STZ activates IDO in the hippocampus of mice and culminates in depressive-like behaviors, measured by an increased duration in immobility time in the forced swimming test and decreased total time of grooming in the splash test. Indirect blockade of IDO activation with the cytokine inhibitor minocycline prevents the development of depressive-like behaviors and attenuates STZ-induced upregulation of proinflammatory cytokines in the hippocampus. Minocycline abrogates the increase in tryptophan and kynurenine levels as well as prevents serotonin dysfunction in the hippocampus of STZ-injected mice. These results suggest that hippocampal IDO activation in STZ-associated depressive-like behavior is mediated by proinflammatory cytokine-dependent mechanisms. Our study not only extends the evidence that IDO has a critical role in mediating inflammation-induced depression but also supports the notion that neuroinflammation and the kynurenine pathway are important targets of novel therapeutic drugs for depression. In addition, our study provides new insights into the neurobiological mechanisms underlying ICV-STZ and indicates that this model could be employed in the preclinical research of depression.


Assuntos
Citocinas/metabolismo , Depressão/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estreptozocina , Animais , Glicemia , Depressão/induzido quimicamente , Modelos Animais de Doenças , Asseio Animal/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Infusões Intraventriculares , Cinurenina/metabolismo , Masculino , Camundongos , Minociclina/farmacologia , Serotonina/metabolismo , Estreptozocina/administração & dosagem , Estreptozocina/antagonistas & inibidores , Triptofano/metabolismo
12.
Chem Biol Interact ; 260: 154-162, 2016 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-27818124

RESUMO

Chrysin is a natural flavonoid which is found in bee propolis, honey and various plants, and antidepressant-like effect of chrysin in chronically stressed mice was previously demonstrated by our group. In this work, we investigated the action of chrysin treatment (5 or 20 mg/kg) for 14 days in the depressant-like behavior and in the hippocampal dysfunction induced by olfactory bulbectomy (OB), an animal model of agitated depression. Results demonstrated that OB occasioned a depressant-like behavior in the splash test, open field test and forced swimming test. Chrysin administration, similarly to fluoxetine (positive control), promoted the attenuation of these behavioral modifications. OB also caused the elevation of tumor necrosis factor-α, interferon-γ, interleukin-1ß, interleukin-6, kynurenine (KYN) levels and indoleamine-2,3-dioxygenase activity, as well as occasioned the decrease of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) levels and increase KYN/tryptophan and 5-hydroxyindoleacetic acid/5-HT ratio in the hippocampus. Chrysin therapy prevented against all these alterations in the hippocampus. In addition, chrysin treatment (20 mg/kg) resulted in the up-regulation of BDNF levels in the control animals, reinforcing our hypothesis that up-regulation of BDNF synthesis play a key role in the antidepressant action of chrysin. In conclusion, this study showed that chrysin, similarly to fluoxetine, is capable of promoting the attenuation of depressant-like behavior and hippocampal dysfunction resulting from OB in mice. These results reinforced the potential of chrysin for the treatment or supplementary treatment of depression, as well as showed that chrysin is also effective with 14 days of therapy in a model of agitated depression.


Assuntos
Depressão/tratamento farmacológico , Depressão/fisiopatologia , Flavonoides/uso terapêutico , Hipocampo/fisiopatologia , Bulbo Olfatório/cirurgia , Animais , Comportamento Animal , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/farmacologia , Fluoxetina/administração & dosagem , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiopatologia , Serotonina/metabolismo
13.
Eur J Pharmacol ; 791: 284-296, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27609609

RESUMO

Chrysin is a flavonoid which is found in bee propolis, honey and various plants. Antidepressant-like effect of chrysin in chronically stressed mice was previously demonstrated by our group. Conversely, neurochemical factors associated with this effect require further investigations. Thus, we investigated the possible involvement of pro-inflammatory cytokines, kynurenine pathway (KP), 5-hydroxytryptamine (5-HT) metabolism and caspases activities in the effect of chrysin in mice exposed to unpredictable chronic stress (UCS). UCS applied for 28 days induced a depressive-like behavior, characterized by decrease in the time of grooming in the splash test and by increase in the immobility time in the tail suspension test. Oral treatment with chrysin (5 or 20mg/kg, 28 days), similarly to fluoxetine (10mg/kg, positive control), culminated in the prevention of these alterations. UCS elevated plasma levels of corticotropin-releasing hormone and adrenocorticotropic hormone, as well the tumor necrosis factor-α, interleukin-1ß, interleukin-6 and kynurenine levels in the prefrontal cortex (PFC) and hippocampus (HP). UCS induced the decrease in the 5-HT levels in the HP and the increase in the indoleamine-2,3-dioxygenase, caspase 3 and 9 activities in the PFC and HP. Treatment with chrysin, similarly to fluoxetine, promoted the attenuation of these alterations occasioned by UCS. These results corroborated with the antidepressant potential of chrysin in the treatment of psychiatric diseases. Furthermore, this work indicated the association of pro-inflammatory cytokines synthesis, KP, 5-HT metabolism and caspases activities with the action exercised by chrysin in mice exposed to UCS.


Assuntos
Antidepressivos/farmacologia , Flavonoides/farmacologia , Neuroquímica , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Caspases/metabolismo , Citocinas/metabolismo , Feminino , Flavonoides/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Receptores de Hormônio Liberador da Corticotropina/sangue , Serotonina/metabolismo , Triptofano/metabolismo
14.
Brain Behav Immun ; 56: 363-77, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26965653

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by a progressive cognitive decline along with various neuropsychiatric symptoms, including depression and anxiety. Increasing evidence has been proposed the activation of the tryptophan-degrading indoleamine-2,3-dyoxigenase (IDO), the rate-limiting enzyme of kynurerine pathway (KP), as a pathogenic factor of amyloid-beta (Aß)-related inflammation in AD. In the current study, the effects of an intracerebroventricular (i.c.v.) injection of Aß1-42 peptide (400pmol/mice; 3µl/site) on the regulation of KP biomarkers (IDO activity, tryptophan and kynurerine levels) and the impact of Aß1-42 on neurotrophic factors levels were investigated as potential mechanisms linking neuroinflammation to cognitive/emotional disturbances in mice. Our results demonstrated that Aß1-42 induced memory impairment in the object recognition test. Aß1-42 also induced emotional alterations, such as depressive and anxiety-like behaviors, as evaluated in the tail suspension and elevated-plus maze tests, respectively. We observed an increase in levels of proinflammatory cytokines in the Aß1-42-treated mice, which led to an increase in IDO activity in the prefrontal cortex (PFC) and the hippocampus (HC). The IDO activation subsequently increased kynurerine production and the kynurenine/tryptophan ratio and decreased the levels of neurotrophic factors in the PFC and HC, which contributed to Aß-associated behavioral disturbances. The inhibition of IDO activation by IDO inhibitor 1-methyltryptophan (1-MT), prevented the development of behavioral and neurochemical alterations. These data demonstrate that brain IDO activation plays a key role in mediating the memory and emotional disturbances in an experimental model based on Aß-induced neuroinflammation.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Hipocampo/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/induzido quimicamente , Cinurenina/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Fatores de Crescimento Neural/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Triptofano/efeitos dos fármacos , Peptídeos beta-Amiloides/administração & dosagem , Animais , Modelos Animais de Doenças , Indolamina-Pirrol 2,3,-Dioxigenase/efeitos dos fármacos , Injeções Intraventriculares , Camundongos , Fragmentos de Peptídeos/administração & dosagem , Reconhecimento Psicológico/efeitos dos fármacos
15.
Horm Behav ; 73: 56-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26122290

RESUMO

Depression is one of the most common mental disorders and a primary cause of disability. To better treat patients suffering this illness, elucidation of the underlying psychopathological and neurobiological mechanisms is urgently needed. Based on the above-mentioned evidence, we sought to investigate the effects of neuropeptide Y (NPY) treatment in tricyclic antidepressant treatment-resistant depression induced by adrenocorticotropic hormone (ACTH) administration. Mice were treated with NPY (5.84, 11.7 or 23.4mmol/µl) intracerebroventricularly (i.c.v.) for one or five days. The levels of serum corticosterone, tryptophan (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and indoleamine 2,3-dioxygenase (IDO) activity in the hippocampus were analyzed. The behavioral parameters (depressive-like and locomotor activity) were also verified. This study demonstrated that ACTH administration increased serum corticosterone levels, KYN, 5-HIAA levels, IDO activity (hippocampus), immobility in the forced swimming test (FST) and the latency to feed in the novelty suppressed feeding test (NSFT). In addition, ACTH administration decreased the BDNF and NGF levels in the hippocampus of mice. NPY treatment was effective in preventing these hormonal, neurochemical and behavioral alterations. It is suggested that the main target of NPY is the modulation of corticosterone and neuronal plasticity protein levels, which may be closely linked with pharmacological action in a model of tricyclic antidepressant treatment-resistant depression. Thus, this study demonstrated a protective effect of NPY on the alterations induced by ACTH administration in mice, indicating that it could be useful as a therapy for the treatment of tricyclic antidepressant treatment-resistant depression.


Assuntos
Hormônio Adrenocorticotrópico , Antidepressivos Tricíclicos/uso terapêutico , Transtorno Depressivo/induzido quimicamente , Transtorno Depressivo/tratamento farmacológico , Resistência a Medicamentos/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Animais , Corticosterona/sangue , Transtorno Depressivo/sangue , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Hidroxi-Indolacético/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/administração & dosagem , Natação/fisiologia
16.
Pharmacol Biochem Behav ; 134: 22-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25931267

RESUMO

In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent.


Assuntos
Envelhecimento/psicologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/prevenção & controle , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Encéfalo/enzimologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Distribuição Aleatória , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo
17.
J Med Food ; 18(7): 818-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25647144

RESUMO

The administration of hesperidin elicits an antidepressant-like effect in mice by a mechanism dependent on an interaction with the L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway, whose stimulation is associated with the activation of potassium (K(+)) channels. Thus, this study investigated the involvement of different types of K(+) channels in the antidepressant-like effect of hesperidin in the mice tail suspension test (TST). The intracerebroventricular administration of tetraethylammonium (TEA, a nonspecific blocker of K(+) channels), glibenclamide (an ATP-sensitive K(+) channel blocker), charybdotoxin (a large- and intermediate-conductance calcium-activated K(+) channel blocker) or apamin (a small-conductance calcium-activated K(+) channel blocker) combined with a subeffective dose of hesperidin (0.01 mg/kg, intraperitoneally [i.p.]) was able to produce a synergistic antidepressant-like effect in the mice TST. Moreover, the antidepressant-like effect elicited by an effective dose of hesperidin (0.3 mg/kg, i.p.) in TST was abolished by the treatment of mice with pharmacological compounds K(+) channel openers (cromakalim and minoxidil). Results showed that the antidepressant-like effect of hesperidin in TST may involve, at least in part, the modulation of neuronal excitability through inhibition of K(+) channels and may act through a mechanism dependent on the inhibition of L-arginine-NO pathway.


Assuntos
Antidepressivos/farmacologia , Hesperidina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/fisiologia , Animais , Apamina/administração & dosagem , Arginina/farmacologia , Charibdotoxina/administração & dosagem , Sinergismo Farmacológico , Glibureto/administração & dosagem , Hesperidina/administração & dosagem , Elevação dos Membros Posteriores , Masculino , Camundongos , Bloqueadores dos Canais de Potássio/administração & dosagem , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio/efeitos dos fármacos , Tetraetilamônio/administração & dosagem
18.
Pharm Biol ; 53(3): 395-403, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25489627

RESUMO

CONTEXT: The organoselenium compounds have been described to demonstrate several biological activities, including pain management. OBJECTIVE: This study investigated the antinociceptive, hyperalgesic, and toxic effects of oral administration of bis(4-methylbenzoyl) diselenide (BMD) in mice. MATERIALS AND METHODS: The antinociceptive and anti-hyperalgesic effects of BMD (1, 5, 10, 25, and 50 mg/kg, p.o.) were evaluated using models of nociception: formalin, capsaicin, bradykinin (BK), cinnamaldehyde, phorbol myristate acetate (PMA), 8-bromo-cAM, and glutamate-induced nociception; and mechanical hyperalgesia induced by carrageenan (Cg) or complete Freund's adjuvant (CFA). The acute toxicity was evaluated by biochemical markers for hepatic and renal damages. RESULTS: BMD significantly inhibited the licking time of the injected paw in the early and late phases of a formalin test with ED50 values of 14.2 and 10.8 mg/kg, respectively. This compound reduced nociception produced by capsaicin (ED50 of 32.5 mg/kg), BK (ED50 of 24.6 mg/kg), glutamate (ED50 of 28.7 mg/kg), cinnamaldehyde (ED50 of 18.9 mg/kg), PMA (ED50 of 9.6 mg/kg), and 8-bromo-cAMP (ED50 of 24.8 mg/kg). In the glutamate test, the pretreatment with nitric oxide (NO) precursor, L-arginine, reversed antinociception caused by BMD or N(ω)-nitro-L-arginine (L-NOARG), but the effect of BMD was not abolished by naloxone. Mechanical hyperalgesia induced by Cg and CFA was attenuated by BMD, 70 ± 4% and 65 ± 4%, respectively. Furthermore, a single oral dose of BMD did not change plasma aspartate (AST) and alanine aminotransferase (ALT) activities or urea and creatinine levels. CONCLUSION: BMD demonstrated as a promising compound because of the antinociceptive and anti-hyperalgesic properties in mice.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Compostos Organosselênicos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Analgésicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Hiperalgesia/patologia , Masculino , Camundongos , Compostos Organosselênicos/farmacologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Substâncias Protetoras/farmacologia
19.
Brain Res Bull ; 104: 19-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24709058

RESUMO

Hesperidin (4'-methoxy-7-O-rutinosyl-3',5-dihydroxyflavanone), a naturally occurring flavanone glycoside, was previously shown to produce an antidepressant-like effect with modultation of the serotonergic 5-HT1A and kappa-opioid receptors. In this study, the signaling mechanisms underlying their antidepressant-like effects were further evaluated by investigating in acute and chronic treatments. Results showed that chronic treatment of hesperidin or hesperitin (0.1, 0.3 and 1mg/kg, intraperitoneal, i.p.) have an antidepressant-like effect in the mouse tail suspension test (TST) without modified the locomotor activity in the open field test. Pretreatment with l-arginine (a nitric oxide (NO) precursor), sildenafil (a phosphodiesterase 5 inhibitor) or S-nitroso-N-acetyl-penicillamine (a NO donor) significantly reversed the reduction in immobility time elicited by acute treatment with hesperidin (0.3mg/kg) in the TST. Hesperidin (0.01mg/kg, a sub-effective dose in acute treatment) produced an additive antidepressant-like effect with N(G)-nitro-l-arginine (an inhibitor of nitric oxide synthase (NOS)) or 7-nitroindazole (a neuronal NOS inhibitor) in the TST. Pretreatment of animals with methylene blue (an inhibitor of NOS/soluble guanylate cyclase (sGC)) or ODQ (a specific inhibitor sGS) caused an additive effect with hesperidin in the TST. Hesperidin in the acute (1mg/kg) and chronic (0.1, 0.3 and 1mg/kg) treatments caused a significant decrease in nitrate/nitrite (NOX) levels in the hippocampus of mice. Chronic treatment with hesperidin (0.3 and 1mg/kg) also resulted in an increase in hippocampal brain-derived neurotrophic factor (BDNF) levels. These results demonstrated that the antidepressant-like effect of hesperidin is likely mediated by inhibition of l-arginine-NO-cGMP pathway and by increased of the BDNF levels in hippocampus.


Assuntos
Antidepressivos/farmacologia , Hesperidina/farmacologia , Atividade Motora/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antidepressivos/administração & dosagem , Arginina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , GMP Cíclico/metabolismo , Hesperidina/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA