Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 60(2): 569-577, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31999453

RESUMO

The lipophilicity of cholesterol was investigated by using coarse-grained molecular dynamics and umbrella sampling. The previous coarse-grained cholesterol models in the literature are more hydrophobic than our model. The Gibbs free energy of transferring cholesterol from the octanol phase to water phase (ΔGo/w) was 11.88 ± 0.08 kcal mol-1, and the octanol-water partitioning coefficient (logP) was estimated to be 8.72 ± 0.06. The latter is in agreement with the logP values found by bioinformatics, which are standard methods to predict the lipophilicity, giving excellent octanol/water partitioning coefficients compared with experimental ones for different molecules. We also performed the first experimentally direct measurement of this important property for cholesterol. The experimental octanol/water partitioning coefficient of cholesterol was measured to be 8.86 ± 0.79, which is in excellent agreement with our calculated logP value from our parametrized coarse-grained cholesterol model. This shows the significance of systematic optimization of the lipophilicity for developing coarse-grain models of important biomolecules with complicated molecular structures and hydrophobic character like cholesterol.


Assuntos
Colesterol/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Octanóis/química , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA