Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1046, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837467

RESUMO

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

2.
Environ Pollut ; 243(Pt B): 1008-1014, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30248600

RESUMO

In the 21st century, severe droughts associated with climate change will increase biomass burning (BB) in Brazil caused by the human activities. Recent droughts, especially in 2005, 2010, and 2015, caused strong socioeconomic and environmental impacts. The 2015 drought considered the most severe since 1901, surpassed the 2005 and 2010 events in respect to area and duration. Herein, based on satellite data, the 2005, 2010 and 2015 drought impacts on wildfire episodes and carbon monoxide (CO) variability during the dry and the dry-to-wet transition seasons were examined. The BB occurrences in the dry season were fewer during 2015 than during 2005 (-44%) and 2010 (-47%). Contrasting, the BB events in the dry-to-wet transition season, were higher during 2015 than during 2005 (+192%) and 2010 (+332%). The BB outbreaks were concentrated in the southern and southwestern Amazon during 2005, in the Cerrado region during 2010, and mainly in the central and northern Amazon during 2015, an area normally with few fires. The CO concentration showed positive variations (up to +30%) occurred in the southern Amazon and central Brazil during the 2005 and 2010 dry seasons, and north of 20 °S during the 2015-2016 dry-to-wet transition season. The BB outbreaks and the CO emissions showed a considerable spatiotemporal variability among the droughts of 2005, 2010, and 2016, first of them driven by local conditions in the tropical North Atlantic (TNA), characterized by warm than normal sea surface waters and the other two by the El Niño occurrences.


Assuntos
Monóxido de Carbono/análise , Secas/estatística & dados numéricos , Monitoramento Ambiental , Incêndios/estatística & dados numéricos , Biomassa , Brasil , Mudança Climática , Atividades Humanas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA