Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 180: 108220, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37741006

RESUMO

Microplastics are created for commercial use, are shed from textiles, or result from the breakdown of larger plastic items. Recent reports have shown that microplastics accumulate in human tissues and may have adverse health consequences. Currently, there are no standardized environmental monitoring systems to track microplastic accumulation within human tissues. Using Raman spectroscopy, we investigated the temporal exposures to plastic pollution in Hawai'i and noted a significant increase in the accumulation of microplastics in discarded placentas over the past 15 years, with changes in the size and chemical composition of the polymers. These findings provide a rare insight into the vulnerability and sensitivity of Pacific Island residents to plastic pollution and illustrate how discarded human tissues can be used as an innovative environmental plastic pollution monitoring system.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Gravidez , Feminino , Plásticos/química , Havaí , Monitoramento Ambiental , Poluição Ambiental , Poluentes Químicos da Água/análise
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120328, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34481146

RESUMO

Macrophages are key cells in the immune inflammatory response that can be differentiated into M1 and M2 phenotypes. Polarization has a critical therapeutic value, especially in diseases in which an M1/M2 imbalance plays a pathophysiological role. Raman spectroscopy has proven to be a promising bioanalytical technique for discriminating different cell types. However, to our knowledge, its application to identify the functional polarization of macrophages into M1 or M2 cells is yet to be investigated. In this work, Raman spectroscopy was applied to the analysis of macrophage polarization, and the spectral datasets were analyzed using principal component analysis (PCA). In vitro, resting J774.1 macrophages were treated with LPS/IFN-γ to induce the M1 phenotype or with IL-4 to induce the M2 phenotype. The resulting Raman spectra showed sufficient biochemical information to distinguish between M1 and M2 phenotypes when analyzed by PCA, reflecting the changes in cell markers caused by differentiation. The Raman spectra collected from LPS-stimulated M1 and M2 macrophages were more intense. The functional phenotype of M1 macrophages was confirmed by IL-6 secretion and TNF-α mRNA expression, while M2 macrophages produced IL-10 and Arg-1 mRNA, as well as by the morphological changes observed by scanning electron microscopy. Taken together, the results indicate that Raman spectroscopy combined with PCA analysis is a useful tool to identify the functional phenotypes of macrophages, providing an alternative way to distinguish between cells in distinct differentiation stages.


Assuntos
Macrófagos , Análise Espectral Raman , Animais , Diferenciação Celular , Linhagem Celular , Lipopolissacarídeos/farmacologia , Camundongos , Fenótipo
3.
Front Physiol ; 12: 766382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925062

RESUMO

Group B Streptococcus (GBS) infection during pregnancy is involved in maternal sepsis, chorioamnionitis, prematurity, fetal infection, neonatal sepsis, and neurodevelopmental alterations. The GBS-induced chorioamnionitis leads to a plethora of immune and trophoblast cells alterations that could influence endothelial cells to respond differently to angiogenic mediators and alter placental vascular structure and function in pregnant women. In this context, preventive measures are needed to reduce such dysfunctions. As such, we evaluated the effects of a non-lethal exposure to inactivated GBS on trophoblast cells and chorionic villi explants, and if the treatment with uvaol would mitigate these effects. The concentration of 106 CFU of GBS was chosen since it was unable to reduce the HTR-8/SVneo cell line nor term chorionic villi explant viability. Raman spectroscopy of trophoblast cells showed significant alterations in their biochemical signature, mostly reverted by uvaol. GBS exposure increased HTR-8/SVneo cells IL-1ß and IFN-γ production, phagocytosis, oxidative stress, and decreased trophoblast cell migration. The Ea.hy926 endothelial cell line produced angiopoietin-2, CXCL-8, EGF, FGF-b, IL-6, PlGF, sPECAM-1, and VEGF in culture. When co-cultured in invasion assay with HTR-8/SVneo trophoblast cells, the co-culture had increased production of angiopoietin-2, CXCL-8, FGF-b, and VEGF, while reduced sPECAM-1 and IL-6. GBS exposure led to increased CXCL-8 and IL-6 production, both prevented by uvaol. Chorionic villi explants followed the same patterns of production when exposed to GBS and response to uvaol treatment as well. These findings demonstrate that, even a non-lethal concentration of GBS causes placental inflammation and oxidative stress, reduces trophoblast invasion of endothelial cells, and increases CXCL-8 and IL-6, key factors that participate in vascular dysregulation observed in several diseases. Furthermore, uvaol treatment prevented most of the GBS-provoked changes. Hence, uvaol could prevent the harmful effects of GBS infection for both the mother and the fetus.

4.
Front Pharmacol ; 12: 787633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912230

RESUMO

The aim of this study was to obtain a Brazilian red propolis (BRP) enriched composite resin and to perform the characterization of its antibacterial activity, mechanical, and physical-chemical properties. Brazilian red propolis ethyl acetate extract (EABRP) was characterized by LC-ESI-Orbitrap-FTMS, UPLC-DAD, antibacterial activity, total flavonoids content, and radical scavenging capacity. BRP was incorporated to a commercial composite resin (RC) to obtain BRP enriched composite at 0.1, 0.15 and 0.25% (RP10, RP15 and RP25, respectively). The antibacterial activity RPs was evaluated against Streptococcus mutans by contact direct test and expressed by antibacterial ratio. The RPs were characterized as its cytotoxicity against 3T3 fibroblasts, flexural strength (FS), Knoop microhardness (KHN), post-cure depth (CD), degree of conversion (DC%), water sorption (Wsp), water solubility (Wsl), average roughness (Ra), and thermal analysis. Were identified 50 chemical compounds from BRP extract by LC-ESI-Orbitrap-FTMS. EABRP was bacteriostatic and bactericide at 125 and 500 µg/ml, respectively. The RP25 exhibited antibacterial ratio of 90.76% after 1 h of direct contact with S. mutans (p < 0.0001) while RC no showed significative antibacterial activity (p = 0.1865), both compared with cell control group. RPs and RC no showed cytotoxicity. RPs exhibited CD from 2.74 to 4.48 mm, DC% from 80.70 to 83.96%, Wsp from 17.15 to 21.67 µg/mm3, Wsl from 3.66 to 4.20 µg/mm3, Ra from 14.48 to 20.76 nm. RPs showed thermal resistance between 448-455°C. The results support that propolis can be used on development of modified composite resins that show antibacterial activity and that have compatible mechanical and physical-chemical properties to the indicate for composite resins.

5.
Analyst ; 144(5): 1622-1631, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30633254

RESUMO

Corticosteroids are widely used as effective treatments for the control of chronic inflammatory diseases. However, because their long-term administration carries serious consequences, there is a need to investigate alternative therapies to reduce or even replace their use. In this regard, phenolic compounds have been presented as an alternative for the treatment of inflammatory diseases. p-Coumaric acid, a natural phenolic compound found throughout nature, exhibits antioxidative and anti-inflammatory properties. Herein, using a combination of Raman spectroscopy with principal component analysis and hierarchical cluster analysis, the inflammatory process induced by cigarette smoke extract (CSE) in epithelial cells treated with either a corticosteroid or p-coumaric acid was monitored in vitro. Our findings showed that p-coumaric acid had a significant anti-inflammatory effect in CSE-activated epithelial cells, and thus may be a useful alternative to corticosteroids for the treatment of airway inflammation in chronic obstructive pulmonary disease. In addition, multivariate analysis of the cell spectral data indicated that the mechanisms of action of the two drugs occur through different routes.


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Células Epiteliais/efeitos dos fármacos , Propionatos/farmacologia , Células A549 , Análise por Conglomerados , Ácidos Cumáricos , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-8/antagonistas & inibidores , Interleucina-8/efeitos dos fármacos , Análise de Componente Principal , Análise Espectral Raman , Poluição por Fumaça de Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA