Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Immunol Cell Biol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693888

RESUMO

Natural killer (NK) cells possess potent cytotoxicity against infected and cancerous cells and hold promise in the development of new immunotherapies. This article for the Highlights of 2023 Series focuses on current advances in NK cell biology in cancerous and infectious settings and highlights opportunities for therapeutic interventions, including engineered NK cell therapies and advancements in feeder cell technologies.

3.
Clin Transl Immunology ; 13(3): e1501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525380

RESUMO

Objectives: Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples. Methods: In this study, we conducted a high-dimensional examination of the cell surface expression of 16 NK cell receptors in paediatric patients with acute myeloid leukaemia and acute lymphoblastic leukaemia, as well as in samples of non-age matched adult peripheral blood (APB) and umbilical cord blood (UCB). An unsupervised analysis was carried out in order to identify NK cell populations present in paediatric leukaemias. Results: We observed that leukaemia NK cells clustered together with UCB NK cells and expressed relatively higher levels of the NKG2A receptor compared to APB NK cells. In addition, CD56dimCD16+CD57- NK cells lacking NKG2A expression were mainly absent in paediatric leukaemia patients. However, CD56br NK cell populations expressing high levels of NKG2A were highly represented in paediatric leukaemia patients. NKG2A expression on leukaemia NK cells was found to be positively correlated with the expression of its ligand, suggesting that the NKG2A-HLA-E interaction may play a role in modifying NK cell responses to leukaemia cells. Conclusion: We provide an in-depth analysis of NK cell populations in paediatric leukaemia patients. These results support the development of immunotherapies targeting immunosuppressive receptors, such as NKG2A, to enhance innate immunity against paediatric leukaemia.

4.
Clin Transl Immunology ; 13(2): e1488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322491

RESUMO

Objectives: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus infection in pregnancy is associated with higher incidence of placental dysfunction, referred to by a few studies as a 'preeclampsia-like syndrome'. However, the mechanisms underpinning SARS-CoV-2-induced placental malfunction are still unclear. Here, we investigated whether the transcriptional architecture of the placenta is altered in response to SARS-CoV-2 infection. Methods: We utilised whole-transcriptome, digital spatial profiling, to examine gene expression patterns in placental tissues from participants who contracted SARS-CoV-2 in the third trimester of their pregnancy (n = 7) and those collected prior to the start of the coronavirus disease 2019 (COVID-19) pandemic (n = 9). Results: Through comprehensive spatial transcriptomic analyses of the trophoblast and villous core stromal cell subpopulations in the placenta, we identified SARS-CoV-2 to promote signatures associated with hypoxia and placental dysfunction. Notably, genes associated with vasodilation (NOS3), oxidative stress (GDF15, CRH) and preeclampsia (FLT1, EGFR, KISS1, PAPPA2) were enriched with SARS-CoV-2. Pathways related to increased nutrient uptake, vascular tension, hypertension and inflammation were also enriched in SARS-CoV-2 samples compared to uninfected controls. Conclusions: Our findings demonstrate the utility of spatially resolved transcriptomic analysis in defining the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy, particularly its role in placental dysfunction. Furthermore, this study highlights the significance of digital spatial profiling in mapping the intricate crosstalk between trophoblasts and villous core stromal cells, thus shedding light on pathways associated with placental dysfunction in pregnancies with SARS-CoV-2 infection.

6.
Trends Pharmacol Sci ; 45(2): 134-144, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38212196

RESUMO

Sarcomas are rare and heterogeneous cancers that arise from bone or soft tissue, and are the second most prevalent solid cancer in children and adolescents. Owing to the complex nature of pediatric sarcomas, the development of therapeutics for pediatric sarcoma has seen little progress in the past decades. Existing treatments are largely limited to chemotherapy, radiation, and surgery. Limited knowledge of the sarcoma tumor microenvironment (TME) and of well-defined target antigens in the different subtypes necessitates an alternative investigative approach to improve treatments. Recent advances in spatial omics technologies have enabled a more comprehensive study of the TME in multiple cancers. In this opinion article we discuss advances in our understanding of the TME of some cancers enabled by spatial omics technologies, and we explore how these technologies might advance the development of precision treatments for sarcoma, especially pediatric sarcoma.


Assuntos
Sarcoma , Criança , Adolescente , Humanos , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Microambiente Tumoral
7.
Nat Immunol ; 25(2): 240-255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182668

RESUMO

Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.


Assuntos
Células Matadoras Naturais , Fator de Transcrição AP-1 , Fator de Transcrição AP-1/genética , Células Matadoras Naturais/metabolismo , Receptores de Interleucina-15 , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo
8.
Small ; 20(16): e2304879, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044307

RESUMO

The development of skin organs for studying developmental pathways, modeling diseases, or regenerative medicine purposes is a major endeavor in the field. Human induced pluripotent stem cells (hiPSCs) are successfully used to derive skin cells, but the field is still far from meeting the goal of creating skin containing appendages, such as hair follicles and sweat glands. Here, the goal is to generate skin organoids (SKOs) from human skin fibroblast or placental CD34+ cell-derived hiPSCs. With all three hiPSC lines, complex SKOs with stratified skin layers and pigmented hair follicles are generated with different efficacies. In addition, the hiPSC-derived SKOs develop sebaceous glands, touch-receptive Merkel cells, and more importantly eccrine sweat glands. Together, physiologically relevant skin organoids are developed by direct induction of embryoid body formation, along with simultaneous inactivation of transforming growth factor beta signaling, activation of fibroblast growth factor signaling, and inhibition of bone morphogenetic protein signaling pathways. The skin organoids created in this study can be used as valuable platforms for further research into human skin development, disease modeling, or reconstructive surgeries.


Assuntos
Células-Tronco Pluripotentes Induzidas , Gravidez , Humanos , Feminino , Placenta , Pele , Folículo Piloso/fisiologia , Organoides
9.
Curr Opin Immunol ; 86: 102409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154421

RESUMO

Tumour necrosis factor (TNF) is a primary mediator of inflammatory processes by facilitating cell death, immune cell activation and triggering of inflammation. In the cancer context, research has revealed TNF as a multifaceted cytokine that can be both pro- or anti-tumorigenic depending on what context is observed. We explore the plethora of ways that TNF and its receptors manipulate the functional and phenotypic characteristics in the tumour microenvironment (TME) on both tumour cells and immune cells, promoting either tumour elimination or progression. Here, we discuss the latest cutting-edge TNF-focused biologics currently in clinical translation that modifies the TME to derive greater immune responses and therapeutic outcomes, and further give perspectives on the future of targeting TNF in the context of cancer by emerging technological approaches.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Inflamação , Fator de Necrose Tumoral alfa/fisiologia , Citocinas , Neoplasias/terapia
10.
Immunology ; 170(3): 401-418, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605469

RESUMO

The SARS-CoV-2 (COVID-19) virus has caused a devastating global pandemic of respiratory illness. To understand viral pathogenesis, methods are available for studying dissociated cells in blood, nasal samples, bronchoalveolar lavage fluid and similar, but a robust platform for deep tissue characterization of molecular and cellular responses to virus infection in the lungs is still lacking. We developed an innovative spatial multi-omics platform to investigate COVID-19-infected lung tissues. Five tissue-profiling technologies were combined by a novel computational mapping methodology to comprehensively characterize and compare the transcriptome and targeted proteome of virus infected and uninfected tissues. By integrating spatial transcriptomics data (Visium, GeoMx and RNAScope) and proteomics data (CODEX and PhenoImager HT) at different cellular resolutions across lung tissues, we found strong evidence for macrophage infiltration and defined the broader microenvironment surrounding these cells. By comparing infected and uninfected samples, we found an increase in cytokine signalling and interferon responses at different sites in the lung and showed spatial heterogeneity in the expression level of these pathways. These data demonstrate that integrative spatial multi-omics platforms can be broadly applied to gain a deeper understanding of viral effects on cellular environments at the site of infection and to increase our understanding of the impact of SARS-CoV-2 on the lungs.

11.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480151

RESUMO

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

12.
Nat Commun ; 14(1): 2155, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059710

RESUMO

Acute myeloid leukemia (AML) is a genetically heterogeneous, aggressive hematological malignancy induced by distinct oncogenic driver mutations. The effect of specific AML oncogenes on immune activation or suppression is unclear. Here, we examine immune responses in genetically distinct models of AML and demonstrate that specific AML oncogenes dictate immunogenicity, the quality of immune response and immune escape through immunoediting. Specifically, expression of NrasG12D alone is sufficient to drive a potent anti-leukemia response through increased MHC Class II expression that can be overcome with increased expression of Myc. These data have important implications for the design and implementation of personalized immunotherapies for patients with AML.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Oncogenes , Neoplasias Hematológicas/genética
13.
Trends Cancer ; 9(2): 111-121, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36379852

RESUMO

Enhancing natural killer (NK) cell-based innate immunity has become a promising strategy for immunotherapy against hard-to-cure solid cancers. Monoclonal antibody (mAb) therapy has been used to activate NK-cell-mediated antibody-dependent cellular cytotoxicity (ADCC) towards solid cancers. Cancer cells, however, can subvert immunosurveillance using multiple immunosuppressive mechanisms, which may hamper NK cell ADCC. Mechanisms to safely enhance ADCC by NK cells, such as utilizing temporary inhibition of receptor endocytosis to increase antibody presentation from target to effector cells can now be used to enhance NK-cell-mediated ADCC against solid tumors. This review summarizes and discusses the recent advances in the field and highlights current and potential future use of immunotherapies to maximize the therapeutic efficacy of innate anticancer immunity.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Imunoterapia
14.
Cell Mol Immunol ; 20(1): 65-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36471114

RESUMO

The cytokine granulocyte-macrophage-colony stimulating factor (GM-CSF) possesses the capacity to differentiate monocytes into macrophages (MØs) with opposing functions, namely, proinflammatory M1-like MØs and immunosuppressive M2-like MØs. Despite the importance of these opposing biological outcomes, the intrinsic mechanism that regulates the functional polarization of MØs under GM-CSF signaling remains elusive. Here, we showed that GM-CSF-induced MØ polarization resulted in the expression of cytokine-inducible SH2-containing protein (CIS) and that CIS deficiency skewed the differentiation of monocytes toward immunosuppressive M2-like MØs. CIS deficiency resulted in hyperactivation of the JAK-STAT5 signaling pathway, consequently promoting downregulation of the transcription factor Interferon Regulatory Factor 8 (IRF8). Loss- and gain-of-function approaches highlighted IRF8 as a critical regulator of the M1-like polarization program. In vivo, CIS deficiency induced the differentiation of M2-like macrophages, which promoted strong Th2 immune responses characterized by the development of severe experimental asthma. Collectively, our results reveal a CIS-modulated mechanism that clarifies the opposing actions of GM-CSF in MØ differentiation and uncovers the role of GM-CSF in controlling allergic inflammation.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Macrófagos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Monócitos/metabolismo , Citocinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Diferenciação Celular
15.
Trends Biotechnol ; 41(1): 77-92, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35840426

RESUMO

Natural killer (NK) cells have emerged as a major target for cancer immunotherapies, particularly as cellular therapy modalities because they have relatively less toxicity than T lymphocytes. However, NK cell-based therapy suffers from many challenges, including problems with its activation, resistance to genetic engineering, and large-scale expansion needed for therapeutic purposes. Recently, nanobiomaterials have emerged as a promising solution to control the challenges associated with NK cells. This focused review summarises the recent advances in the field and highlights current and future perspectives of using nanobiomaterials to maximise anticancer responses of NK cells for safe and effective immunotherapy. Finally, we provide our opinion on the role of smart materials in activating NK cells as a potential cellular therapy of the future.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Células Matadoras Naturais , Imunoterapia , Linfócitos T , Imunoterapia Adotiva
16.
Trends Immunol ; 43(11): 864-867, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244891

RESUMO

Recent evidence suggests that cancer cell-derived extracellular vesicles might facilitate immunoevasion. Glycans are known to play a key role in immunomodulation, especially when tethered to biological membranes. However, the extracellular vesicle glycocode in cancer immunoevasion remains a largely unexplored area with promising potential for new putative diagnostic and therapeutic applications.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/terapia
17.
Cancer Immunol Res ; 10(9): 1047-1054, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759796

RESUMO

Antibodies targeting "immune checkpoints" have revolutionized cancer therapy by reactivating tumor-resident cytotoxic lymphocytes, primarily CD8+ T cells. Interest in targeting analogous pathways in other cytotoxic lymphocytes is growing. Natural killer (NK) cells are key to cancer immunosurveillance by eradicating metastases and driving solid tumor inflammation. NK-cell antitumor function is dependent on the cytokine IL15. Ablation of the IL15 signaling inhibitor CIS (Cish) enhances NK-cell antitumor immunity by increasing NK-cell metabolism and persistence within the tumor microenvironment (TME). The TME has also been shown to impair NK-cell fitness via the production of immunosuppressive transforming growth factor ß (TGFß), a suppression which occurs even in the presence of high IL15 signaling. Here, we identified an unexpected interaction between CIS and the TGFß signaling pathway in NK cells. Independently, Cish- and Tgfbr2-deficient NK cells are both hyperresponsive to IL15 and hyporesponsive to TGFß, with dramatically enhanced antitumor immunity. Remarkably, when both these immunosuppressive genes are simultaneously deleted in NK cells, mice are largely resistant to tumor development, suggesting that combining suppression of these two pathways might represent a novel therapeutic strategy to enhance innate anticancer immunity.


Assuntos
Interleucina-15 , Neoplasias , Animais , Linhagem Celular Tumoral , Interleucina-15/metabolismo , Células Matadoras Naturais , Camundongos , Neoplasias/patologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
19.
Immunology ; 167(1): 54-63, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35611558

RESUMO

Immunotherapy has revolutionized cancer therapy by reactivating tumour-resident cytotoxic lymphocytes. More recently, immunotherapy has emerged to restore immunity against infectious agents, including bacterial infections. Immunotherapy primarily targets inhibitory pathways in T cells, however interest in other effector populations, such as natural killer (NK) cells, is growing. We have previously discovered that NK cell metabolism, proliferation and activation can be neutralized through the immunosuppressive transforming growth factor (TGF)-ß pathway by inducing plasticity of NK cells and differentiation into innate lymphoid cell (ILC)1-like subsets. NK cells are also regulated through cytokine-inducible SH2-containing protein (CIS), which is induced by interleukin (IL)-15 and is a potent intracellular checkpoint suppressing NK cell survival and function. Targeting these two distinct pathways to restore NK cell function has shown promise in cancer models, but their application in bacterial infection remains unknown. Here, we investigate whether enhancement of NK cell function can improve anti-bacterial immunity, using Salmonella Typhimurium as a model. We identified conversion of NK cells to ILC1-like for the first time in the context of bacterial infection, where TGF-ß signalling contributed to this plasticity. Future study should focus on identifying further drivers of ILC1 plasticity and its functional implication in bacterial infection model. We further describe that CIS-deficient mice displayed enhanced pro-inflammatory function and dramatically enhanced anti-bacterial immunity. Inhibition of CIS may present as a viable therapeutic option to enhance immunity towards bacterial infection.


Assuntos
Infecções Bacterianas , Neoplasias , Animais , Imunidade Inata , Células Matadoras Naturais , Camundongos , Neoplasias/terapia , Fator de Crescimento Transformador beta/metabolismo
20.
Eur Respir J ; 59(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34675048

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in late 2019 has spread globally, causing a pandemic of respiratory illness designated coronavirus disease 2019 (COVID-19). A better definition of the pulmonary host response to SARS-CoV-2 infection is required to understand viral pathogenesis and to validate putative COVID-19 biomarkers that have been proposed in clinical studies. METHODS: Here, we use targeted transcriptomics of formalin-fixed paraffin-embedded tissue using the NanoString GeoMX platform to generate an in-depth picture of the pulmonary transcriptional landscape of COVID-19, pandemic H1N1 influenza and uninfected control patients. RESULTS: Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs (emphasising the advantages of spatial transcriptomics) with the areas of high viral load associated with an increased type I interferon response. Once the dominant cell type present in the sample, within patient correlations and patient-patient variation, had been controlled for, only a very limited number of genes were differentially expressed between the lungs of fatal influenza and COVID-19 patients. Strikingly, the interferon-associated gene IFI27, previously identified as a useful blood biomarker to differentiate bacterial and viral lung infections, was significantly upregulated in the lungs of COVID-19 patients compared to patients with influenza. CONCLUSION: Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.


Assuntos
COVID-19 , Influenza Humana , Interferon Tipo I , COVID-19/genética , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/genética , Interferon Tipo I/metabolismo , Pulmão/patologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA