Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 234: 111905, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752063

RESUMO

A small library of aminoquinoline and imidazolopiperidine (IMP)-based ligands, containing the 1,2,3-triazole moiety, and their corresponding tricarbonyl rhenium complexes were synthesised and their inhibitory activities evaluated against the chloroquine-sensitive (CQS) and multidrug-resistant (MDR) strains (NF54 and K1, respectively) of P. falciparum. The quinoline-based compounds (L1, L2, ReL1, and ReL2) were at least six-fold more potent than their IMP-based counterparts (L3, L4, ReL3, and ReL4) against both strains of P. falciparum, with the most promising compound (L1) displaying activity comparable to chloroquine diphosphate (CQDP) in the MDR strain. Additionally, all of the synthesised compounds have resistance indices less than CQDP. To gain insight into a possible mechanism of action, in silico hemozoin docking simulations were performed. These studies proposed that the tested compounds may act via hemozoin inhibition, as the new aminoquinoline-derivatives, with the exception of complex ReL2 (binding affinity: -12.62 kcal/mol), showed higher binding affinities than the reference drug chloroquine (CQ, -13.56 kcal/mol). Furthermore, the ligands exhibited superior binding affinity relative to their corresponding Re(I) complexes, which is reflected in their antiplasmodial activity.


Assuntos
Antimaláricos , Rênio , Aminoquinolinas/química , Antimaláricos/química , Cloroquina/farmacologia , Resistência a Medicamentos , Ligantes , Plasmodium falciparum , Rênio/farmacologia
2.
Eur J Med Chem ; 226: 113858, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34562853

RESUMO

Antimicrobial resistance (AMR) is a major emerging threat to public health, causing serious issues in the successful prevention and treatment of persistent diseases. While the problem escalates, lack of financial incentive has lead major pharmaceutical companies to interrupt their antibiotic drug discovery programs. The World Health Organisation (WHO) has called for novel solutions outside the traditional development pathway, with emphasis on new classes of active compounds with non-classical mechanisms of action. Metal complexes are an untapped source of antibiotic potential owing to unique modes of action and a wider range of three-dimensional geometries as compared to purely organic compounds. In this study, we present the antimicrobial and antifungal efficacy of a family of rhenium tricarbonyl diimine complexes with varying ligands, charge and lipophilicity. Our study allowed the identification of potent and non-toxic complexes active in vivo against S. aureus infections at MIC doses as low as 300 ng/mL, as well as against C. albicans-MRSA mixed co-infection. The compounds are capable of suppressing the C. albicans morphogenetic yeast-to-hyphal transition, eradicating fungal-S. aureus co-infection, while showing no sign of cardio-, hepato-, hematotoxiciy or teratogenicity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
3.
Eur J Med Chem ; 205: 112533, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739550

RESUMO

We have prepared a series of ten 3-arylcoumarin molecules, their respective fac-[Re(CO)3(bpy)L]+ and fac-[Re(CO)3(L⁀L)Br] complexes and tested all compounds for their antimicrobial efficacy. Whereas the 3-arylcoumarin ligands are virtually inactive against the human-associated pathogens with minimum inhibitory concentrations (MICs) > 150 µM, when coordinated to the fac-[Re(CO)3]+ core, most of the resulting complexes showed remarkable antibacterial potency. Several rhenium complexes exhibit activity in nanomolar concentrations against Gram-positive pathogens such as Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA) and Enterococcus faecium. The molecules do not affect bacterial cell membrane potential, but some of the most potent complexes strongly interact with DNA, indicating it as a possible target for their mode of action. In vivo studies in the zebrafish model showed that the complexes with anti-staphylococcal/MRSA activity were non-toxic to the organism even at much higher doses of the corresponding MICs. In the zebrafish-MRSA infection model, the complexes increased the survival rate of infected fish up to 100% and markedly reduced bacterial burden. Moreover, all rescued fish developed normally following the treatments with the metallic compounds.


Assuntos
Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cumarínicos/síntese química , Cumarínicos/farmacologia , Desenho de Fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Rênio/química , Animais , Técnicas de Química Sintética , Complexos de Coordenação/química , Cumarínicos/química , Testes de Sensibilidade Microbiana , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA