Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(7): 8890-8903, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715850

RESUMO

We propose a DSP-free coherent-lite system that requires neither high-speed DSP nor high-resolution signal converters for deployment inside datacenters over single mode fiber links with reaches of 10 km and less. The removal of converters and DSP, in which some subsystems are fundamental for successful coherent detection, is enabled by either replacing DSP subsystems with optics having equivalent functions or by re-engineering the system. We validate in a proof-of-concept experiment the proposed DSP-free system using 50 Gbaud DP-16QAM delivering 400 Gb/s over 10 km of single mode fiber (SMF) below the KP4 forward error correction (FEC) threshold of 2.2 × 10-4. In addition, we perform a detailed experimental parametric study of the coherent-lite system in which various system parameters are swept such as baud rate, reach, laser power and laser linewidth. Our results verify that the coherent-lite system can be realized using low-cost DFB lasers with linewidths of a few hundred kHz. Moreover, we compare the performance of the coherent-lite system with that of a conventional coherent transceiver leveraging the full DSP stack. Then, we evaluate the power consumption savings achieved by the coherent-lite scheme relative to a classic DSP-based coherent system. Assuming a CMOS node ranging from 28 to 7 nm for DSP implementation, our estimate shows that the coherent-lite scheme can save 95 to 78% of the power consumed by the following subsystems: analog-to-digital converters, chromatic dispersion compensation, 2 × 2 MIMO polarization demultiplexing and carrier recovery. Finally, we compare the power consumption of the coherent-lite scheme with more standard 400G IM-DD systems utilizing either eight or four parallel WDM lanes (8 × 50G and 4 × 100G). The coherent-lite system is found to have similar module power consumption requirements as a corresponding 4 × 100G IM-DD system while bringing the benefits of coherent detection including improved sensitivity and higher spectral efficiency leading to fewer light sources per transceiver module. To the best of our knowledge, this work represents the first experimental demonstration of a DSP-free coherent-lite system for single channel 400G datacenter 10 km interconnects, a potential attractive solution due to its scalability to future 800G and 1.6T intra-datacenter optical interconnects.

2.
Opt Express ; 25(24): 30336-30348, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221063

RESUMO

We present a dual-polarization O-band silicon photonic (SiP) transmitter for intra-datacenter optical interconnects. The transmitter is built using two identical O-band traveling wave Mach-Zehnder modulators with an average VπL and a bandwidth at 1.5 V bias voltage of 2.88 V.cm and 24.5 GHz, respectively. We experimentally demonstrate the transmitter in a Stokes vector direct-detection (SV-DD) system for dual-polarization intensity modulated signals with 2-level and 4-level pulse amplitude modulation (DP-PAM2 and DP-PAM4) formats. The direct-detection Stokes vector receiver (DD-SVR) followed by offline digital signal processing (DSP) is implemented for SOP de-rotation. We characterize the performance of the SV-DD system versus number of taps, received signal power, state of polarization (SOP), reach, and bit rate. Results reveal that 112 Gb/s DP-PAM2 can be transmitted over 10 km of single mode fiber (SMF) at a bit error rate (BER) below 10-5 at -1 dBm received signal power irrespective of the SOP. Moreover, a 168 Gb/s (42 Gbaud) DP-PAM4 signal can be transmitted over 2 km and 10 km at a BER below the 7% hard-decision forward error correction (HD-FEC) threshold (i.e., 3.8 × 10-3) at 0 dBm and 2 dBm, respectively. Furthermore, 224 Gb/s and 200 Gb/s DP-PAM4 are successfully received at a BER below the HD-FEC in the back-to-back and 2 km cases, respectively. Finally, we compare the performance of the 6 × 2 multiple-input multiple-output (MIMO) equalization to a simpler 4 × 2 MIMO equalization and explain the superior performance of the 6 × 2 in the presence of SVR imperfections.

3.
Opt Express ; 25(22): 27834-27844, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092253

RESUMO

We propose a self-homodyne system for next generation intra-datacenter networking. The proposed system has a higher spectral efficiency for the modulated signal compared to the intensity-modulation/direct-detection (IM/DD) systems and uses digital signal processing of reduced complexity compared to a conventional coherent system. The concept of the proposed system is to send the modulated signal and a tone originating from the same laser over the full-duplex fiber with the aid of circulators to be used remotely at the receiver for coherent detection. The overall system physical complexity approaches the equivalent IM/DD system giving the same target data rate for 400G systems and beyond. We experimentally demonstrate emulation of the proposed system and report data rates of 530 Gb/s, 448 Gb/s and 320 Gb/s on a single wavelength below the KP4 forward error correcting threshold over 500 m, 2 km and 10 km of single mode fiber, respectively.

4.
Opt Express ; 24(26): 30485-30493, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059395

RESUMO

We demonstrate experimentally the transmission of single carrier 56 Gbaud 16-QAM, 8-QAM and QPSK optically modulated signals over 320, 960 and 2,880 km, respectively, using a fully packaged InP IQ modulator and a Stokes vector direct detection (SV-DD) receiver realized using discrete optics. Results show that by optimizing the carrier-to-signal-power ratio, the total throughput-times-distance product for 16 QAM and QPSK are 71,680 Gbps.km and 322,560 Gbps.km, respectively, at bit error rate (BER) below the hard decision forward error correcting threshold (HD-FEC) of 4.5 × 10-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA