Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(34): e2314204, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38775924

RESUMO

Biological materials and organisms possess the fundamental ability to self-organize, through which different components are assembled from the molecular level up to hierarchical structures with superior mechanical properties and multifunctionalities. These complex composites inspire material scientists to design new engineered materials by integrating multiple ingredients and structures over a wide range. Additive manufacturing, also known as 3D printing, has advantages with respect to fabricating multiscale and multi-material structures. The need for multifunctional materials is driving 3D printing techniques toward arbitrary 3D architectures with the next level of complexity. In this paper, the aim is to highlight key features of those 3D printing techniques that can produce either multiscale or multimaterial structures, including innovations in printing methods, materials processing approaches, and hardware improvements. Several issues and challenges related to current methods are discussed. Ultimately, the authors also provide their perspective on how to realize the combination of multiscale and multimaterial capabilities in 3D printing processes and future directions based on emerging research.

2.
Nat Rev Mater ; 7(9): 683-701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757102

RESUMO

Rationally designed architected materials have attained previously untapped territories in materials property space. The properties and behaviours of architected materials need not be stagnant after fabrication; they can be encoded with a temporal degree of freedom such that they evolve over time. In this Review, we describe the variety of materials architected in both space and time, and their responses to various stimuli, including mechanical actuation, changes in temperature and chemical environment, and variations in electromagnetic fields. We highlight the additive manufacturing methods that can precisely prescribe complex geometries and local inhomogeneities to make such responsiveness possible. We discuss the emergent physics phenomena observed in architected materials that are analogous to those in classical materials, such as the formation and behaviour of defects, phase transformations and topologically protected properties. Finally, we offer a perspective on the future of architected materials that have a degree of intelligence through mechanical logic and artificial neural networks.

4.
MRS Bull ; 46(9): 813-821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539055

RESUMO

ABSTRACT: At the start of the COVID-19 pandemic, the US faced nationwide shortages of nasopharyngeal swabs due to both overwhelmed supply chains and an increase in demand. To address this shortfall, multiple 3D printed swabs were ultimately produced and sold for COVID-19 testing. In this work, we present a framework for mechanical and functional bench-testing of nasopharyngeal swabs using standard and widely available material testing equipment. Using this framework, we offer a comprehensive, quantitative comparison of the 3D printed swabs to benchmark their performance against traditional flocked swabs. The test protocols were designed to emulate the clinical use of the nasopharyngeal swabs and to evaluate potential failure modes. Overall, the 3D printed swabs performed comparably to, or outperformed, the traditional swabs in all mechanical tests. While traditional swabs outperformed some of the new 3D printed swabs in terms of sample uptake and retention, similar amounts of RNA were recovered from both 3D printed and traditional swabs.

5.
ACS Appl Mater Interfaces ; 13(17): 20260-20268, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886258

RESUMO

Three-dimensional (3D) printed, hierarchically porous nickel molybdenum (NiMo) electrocatalysts were synthesized and evaluated in a flow-through configuration for the hydrogen evolution reaction (HER) in 1.0 M KOH(aq) in a simple electrochemical H-cell. 3D NiMo electrodes possess hierarchically porous structures because of the resol-based aerogel precursor, which generates superporous carbon aerogel as a catalyst support. Relative to a traditional planar electrode configuration, the flow-through configuration allowed efficient removal of the hydrogen bubbles from the catalyst surface, especially at high operating current densities, and significantly decreased the overpotentials required for HER. An analytical model that accounted for the electrokinetics of HER as well as the mass transport with or without the flow-through configuration was developed to quantitatively evaluate voltage losses associated with kinetic overpotentials and ohmic resistance due to bubble formation in the porous electrodes. The chemical composition, electrochemical surface area (ECSA), and roughness factor (RF) were also systematically studied to assess the electrocatalytic performance of the 3D printed, hierarchically porous NiMo electrodes. An ECSA of 25163 cm2 was obtained with the highly porous structures, and an average overpotential of 45 mV at 10 mA cm-2 was achieved over 24 h by using the flow-through configuration. The flow-through configuration evaluated in the simple H-cell achieved high electrochemical accessible surface areas for electrochemical reactions and provided useful information for adaption of the porous electrodes in flow cells.

6.
Adv Mater ; 32(8): e1906652, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31951066

RESUMO

The performance of pseudocapacitive electrodes at fast charging rates are typically limited by the slow kinetics of Faradaic reactions and sluggish ion diffusion in the bulk structure. This is particularly problematic for thick electrodes and electrodes highly loaded with active materials. Here, a surface-functionalized 3D-printed graphene aerogel (SF-3D GA) is presented that achieves not only a benchmark areal capacitance of 2195 mF cm-2 at a high current density of 100 mA cm-2 but also an ultrahigh intrinsic capacitance of 309.1 µF cm-2 even at a high mass loading of 12.8 mg cm-2 . Importantly, the kinetic analysis reveals that the capacitance of SF-3D GA electrode is primarily (93.3%) contributed from fast kinetic processes. This is because the 3D-printed electrode has an open structure that ensures excellent coverage of functional groups on carbon surface and facilitates the ion accessibility of these surface functional groups even at high current densities and large mass loading/electrode thickness. An asymmetric device assembled with SF-3D GA as anode and 3D-printed GA decorated with MnO2 as cathode achieves a remarkable energy density of 0.65 mWh cm-2 at an ultrahigh power density of 164.5 mW cm-2 , outperforming carbon-based supercapacitors operated at the same power density.

7.
Sci Adv ; 5(9): eaaw1937, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31598550

RESUMO

Materials with a stochastic microstructure, like foams, typically exhibit low mechanical stiffness, whereas lattices with a designed microarchitecture often show notably improved stiffness. These periodic architected materials have previously been designed by rule, using the Maxwell criterion to ensure that their deformation is dominated by the stretching of their struts. Classical designs following this rule tend to be anisotropic, with stiffness depending on the load orientation, but recently, isotropic designs have been reported by superimposing complementary anisotropic lattices. We have designed stiff isotropic lattices de novo with topology optimization, an approach based on continuum finite element analysis. Here, we present results of experiments on these lattices, fabricated by additive manufacturing, that validate predictions of their performance and demonstrate that they are as efficient as those designed by rule, despite appearing to violate the Maxwell criterion. These findings highlight the enhanced potential of topology optimization to design materials with unprecedented properties.

8.
Nat Commun ; 10(1): 4338, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554787

RESUMO

Additively manufactured (AM) metallic materials commonly possess substantial microscale internal stresses that manifest as intergranular and intragranular residual stresses. However, the impact of these residual stresses on the mechanical behaviour of AM materials remains unexplored. Here we combine in situ synchrotron X-ray diffraction experiments and computational modelling to quantify the lattice strains in different families of grains with specific orientations and associated intergranular residual stresses in an AM 316L stainless steel under uniaxial tension. We measure pronounced tension-compression asymmetries in yield strength and work hardening for as-printed stainless steel, and show they are associated with back stresses originating from heterogeneous dislocation distributions and resultant intragranular residual stresses. We further report that heat treatment relieves microscale residual stresses, thereby reducing the tension-compression asymmetries and altering work-hardening behaviour. This work establishes the mechanistic connections between the microscale residual stresses and mechanical behaviour of AM stainless steel.

9.
Annu Rev Chem Biomol Eng ; 10: 17-42, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951639

RESUMO

In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.


Assuntos
Coloides , Impressão Tridimensional , Nanoestruturas
10.
Nano Lett ; 19(9): 5829-5835, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30702295

RESUMO

Critical to the success of three-dimensional (3D) printing of living materials with high performance is the development of new ink materials and 3D geometries that favor long-term cell functionality. Here we report the use of freeze-dried live cells as the solid filler to enable a new living material system for direct ink writing of catalytically active microorganisms with tunable densities and various self-supporting porous 3D geometries. Baker's yeast was used as an exemplary live whole-cell biocatalyst, and the printed structures displayed high resolution, large scale, high catalytic activity and long-term viability. An unprecedented high cell loading was achieved, and cell inks showed unique thixotropic behavior. In the presence of glucose, printed bioscaffolds exhibited increased ethanol production compared to bulk counterparts due largely to improved mass transfer through engineered porous structures. The new living materials developed in this work could serve as a versatile platform for process intensification of an array of bioconversion processes utilizing diverse microbial biocatalysts for production of high-value products or bioremediation applications.


Assuntos
Enzimas/química , Impressão Tridimensional , Saccharomyces cerevisiae/química , Alicerces Teciduais/química , Catálise , Etanol/química , Etanol/metabolismo , Tinta , Porosidade
11.
Science ; 363(6431): 1075-1079, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30705152

RESUMO

Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to their reliance on material layering. We demonstrated concurrent printing of all points within a three-dimensional object by illuminating a rotating volume of photosensitive material with a dynamically evolving light pattern. We printed features as small as 0.3 millimeters in engineering acrylate polymers and printed soft structures with exceptionally smooth surfaces into a gelatin methacrylate hydrogel. Our process enables us to construct components that encase other preexisting solid objects, allowing for multimaterial fabrication. We developed models to describe speed and spatial resolution capabilities and demonstrated printing times of 30 to 120 seconds for diverse centimeter-scale objects.

12.
Sci Adv ; 4(12): eaau6419, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30539147

RESUMO

Typically, mechanical metamaterial properties are programmed and set when the architecture is designed and constructed, and do not change in response to shifting environmental conditions or application requirements. We present a new class of architected materials called field responsive mechanical metamaterials (FRMMs) that exhibit dynamic control and on-the-fly tunability enabled by careful design and selection of both material composition and architecture. To demonstrate the FRMM concept, we print complex structures composed of polymeric tubes infilled with magnetorheological fluid suspensions. Modulating remotely applied magnetic fields results in rapid, reversible, and sizable changes of the effective stiffness of our metamaterial motifs.

13.
Sci Adv ; 4(8): eaas9459, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30182056

RESUMO

Monolithic nanoporous metals, derived from dealloying, have a unique bicontinuous solid/void structure that provides both large surface area and high electrical conductivity, making them ideal candidates for various energy applications. However, many of these applications would greatly benefit from the integration of an engineered hierarchical macroporous network structure that increases and directs mass transport. We report on 3D (three-dimensional)-printed hierarchical nanoporous gold (3DP-hnp-Au) with engineered nonrandom macroarchitectures by combining 3D printing and dealloying. The material exhibits three distinct structural length scales ranging from the digitally controlled macroporous network structure (10 to 1000 µm) to the nanoscale pore/ligament morphology (30 to 500 nm) controlled by dealloying. Supercapacitance, pressure drop, and catalysis measurements reveal that the 3D hierarchical nature of our printed nanoporous metals markedly improves mass transport and reaction rates for both liquids and gases. Our approach can be applied to a variety of alloy systems and has the potential to revolutionize the design of (electro-)chemical plants by changing the scaling relations between volume and catalyst surface area.

14.
Sci Adv ; 3(12): eaao5496, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29230437

RESUMO

Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s.

15.
Nano Lett ; 17(12): 7171-7176, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-28872874

RESUMO

Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm3 and an electrical conductivity up to 51 000 S/m. Mechanical studies show that silver nanowire aerogels exhibit "elastic stiffening" behavior with a Young's modulus up to 16 800 Pa.

16.
Opt Express ; 25(10): 11788-11800, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788738

RESUMO

Selective Laser Melting (SLM) of metal powder bed layers, whereby 3D metal objects can be printed from a digital file with unprecedented design flexibility, is spurring manufacturing innovations in medical, automotive, aerospace and textile industries. Because SLM is based on raster-scanning a laser beam over each layer, the process is relatively slow compared to most traditional manufacturing methods (hours to days), thus limiting wider spread use. Here we demonstrate the use of a large area, photolithographic method for 3D metal printing, using an optically-addressable light valve (OALV) as the photomask, to print entire layers of metal powder at once. An optical sheet of multiplexed ~5 kW, 20 ms laser diode and ~1 MW, 7 ns Q-switched laser pulses are used to selectively melt each layer. The patterning of near infrared light is accomplished by imaging 470 nm light onto the transmissive OALV, which consists of polarization-selective nematic liquid crystal sandwiched between a photoconductor and transparent conductor for switching.

18.
Phys Rev Lett ; 117(17): 175901, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824463

RESUMO

Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.

19.
Chem Commun (Camb) ; 52(78): 11627-11630, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27711287

RESUMO

This communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. This simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.

20.
Faraday Discuss ; 192: 271-281, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27504736

RESUMO

Purpose-designed, water-lean solvents have been developed to improve the energy efficiency of CO2 capture from power plants, including CO2-binding organic liquids (CO2BOLs) and ionic liquids (ILs). Many of these solvents are highly viscous or change phases, posing challenges for conventional process equipment. Such problems can be overcome by encapsulation. Micro-Encapsulated CO2 Sorbents (MECS) consist of a CO2-absorbing solvent or slurry encased in spherical, CO2-permeable polymer shells. The resulting capsules have diameters in the range of 100-600 µm, greatly increasing the surface area and CO2 absorption rate of the encapsulated solvent. Encapsulating these new solvents requires careful selection of shell materials and fabrication techniques. We find several common classes of polymers are not compatible with MECS production, but we develop two custom formulations, a silicone and an acrylate, that show promise for encapsulating water-lean solvents. We make the first demonstration of an encapsulated IL for CO2 capture. The rate of CO2 absorption is enhanced by a factor of 3.5 compared to a liquid film, a value that can be improved by further development of shell materials and fabrication techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA