Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(14): e9767, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747139

RESUMO

RATIONALE: In soft chemical ionization mass spectrometry, analyte ions are produced via ion-molecule reactions in the reactor. When an electric field E is imposed, the ion drift velocity vd determines the reaction time and the effective ion temperature. Agreement between experimental ion mobilities and theoretical predictions confirms the accuracy of the ion residence time measurement procedure. METHODS: A selected ion flow-drift tube (SIFDT), an instrument with a chemical ionization source, was used to produce protonated aldehydes and selectively inject them into the resistive glass drift tube filled with He. Arrival-time distributions of ions were obtained using the Hadamard modulation. Reduced ion mobilities were then obtained at a pressure of 2 hPa in the E/N range of 5-15 Td. Theoretical ion mobility values were calculated using two methods: hard-sphere approximation and trajectory modelling. RESULTS: The measured mobilities of three saturated and three unsaturated protonated aldehydes do not show substantial variation across the studied E/N range. Effective temperatures calculated using the Wannier formula from measured gas temperatures ranged from 300 to 315 K. Experimentally obtained values of the near-zero- E/N-reduced ion mobilities agree with both methods of calculations typically within ±3% standard deviation (maximum ±5%). CONCLUSIONS: The experimental SIFDT values of reduced mobilities in He of protonated aldehyde molecules generated from a chemical ionization source are in close agreement with two different theoretical methods based on the density functional theory calculations of ion geometries and partial atomic charges. Besides its fundamental importance, the ion mobility results validate the correct operation of the drift tube reactor and the ion residence time measurement procedure. Diffusion losses can also be determined from these results.

2.
Anal Chem ; 96(4): 1397-1401, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243802

RESUMO

An instrument integrating thermal desorption (TD) to selected ion flow tube mass spectrometry (SIFT-MS) is presented, and its application to analyze volatile organic compounds (VOCs) in human breath is demonstrated for the first time. The rationale behind this development is the need to analyze breath samples in large-scale multicenter clinical projects involving thousands of patients recruited in different hospitals. Following adapted guidelines for validating analytical techniques, we developed and validated a targeted analytical method for 21 compounds of diverse chemical class, chosen for their clinical and biological relevance. Validation has been carried out by two independent laboratories, using calibration standards and real breath samples from healthy volunteers. The merging of SIFT-MS and TD integrates the rapid analytical capabilities of SIFT-MS with the capacity to collect breath samples across multiple hospitals. Thanks to these features, the novel instrument has the potential to be easily employed in clinical practice.


Assuntos
Líquidos Corporais , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Testes Respiratórios/métodos , Espectrometria de Massas/métodos , Líquidos Corporais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA