Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Prosthodont ; 36(6): 133-142, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38112736

RESUMO

PURPOSE: To examine the effects of anodization and different surface modifications of titanium on bond strength to 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) resin cement. MATERIALS AND METHODS: Grade 5 titanium alloy disks (n = 160) were assigned to one of five prebonding surface treatment study groups (polished; polished and anodized; polished, etched, and anodized; sandblasted; sandblasted and anodized). Disks were adhesively bonded with 10-MDP resin cement (Panavia 21; bonding area: 3.3 mm in diameter) to composite resin cylinders. In each study group, tensile bond strength tests were conducted after 24 ± 1 hours and after 6 months (180 ± 2 days) of water storage (n = 16 specimens per water storage subgroup). Debonded specimens were stereomicroscopically analyzed to determine their fracture mode. Statistics included one-way and multifactorial ANOVA and Tukey post hoc tests (α = .05). RESULTS: Anodization and water storage did not significantly (P ≥ .389) affect tensile bond strength. Although subgroups of polished samples had significantly (P ≤ .031) lower bond strengths (subgroup mean values: 20 to 26 MPa) than etched or sandblasted samples (subgroup mean values: 29 to 33 MPa), they nonetheless exceeded the empirical threshold of 10 MPa used as a criterion for clinical recommendation. The fracture mode of all test specimens was predominantly cohesive. CONCLUSIONS: Anodization of titanium surfaces can be performed without weakening the adhesion of 10-MDP-based resin cement to titanium.


Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Titânio , Propriedades de Superfície , Metacrilatos/química , Água/química , Teste de Materiais , Zircônio/química , Análise do Estresse Dentário , Resistência à Tração
2.
Int J Prosthodont ; 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36288488

RESUMO

PURPOSE: To examine the effects of anodization and different surface modifications of titanium on bond strength to 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) resin cement. MATERIALS AND METHODS: Grade 5 titanium alloy disks (n = 160) were assigned to one of five prebonding surface treatment study groups (polished; polished and anodized; polished, etched, and anodized; sandblasted; sandblasted and anodized). Disks were adhesively bonded with 10-MDP cement (Panavia 21; bonding area: 3.3 mm in diameter) to resin cylinders. In each study group, tensile bond strength tests were conducted after 24 ± 1 hours and after 6 months (180 ± 2 days) of water storage (n = 16 specimens per water storage subgroup). Debonded specimens were stereomicroscopically analyzed to determine their fracture mode. Statistics included one-way and multifactorial analysis of variance and Tukey post hoc tests (α = .05). RESULTS: Anodization and water storage did not significantly (P ≥ .389) affect tensile bond strength. Although subgroups of polished samples had significantly (P ≤ .031) lower bond strengths (subgroup mean values: 20 to 26 MPa) than etched or sandblasted samples (subgroup mean values: 29 to 33 MPa), they nonetheless exceeded the empirical threshold of 10 MPa used as a criterion for clinical recommendation. The fracture mode of all test specimens was predominantly cohesive. CONCLUSION: Anodization of titanium surfaces can be performed without weakening the adhesion of 10-MDP-based resin cement to titanium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA