Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Rev Sci Instrum ; 94(2): 023507, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859040

RESUMO

The PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for "single-shot mode," the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning ∼3 to 75 MeV with <0.4 MeV resolution using just 20 films vs 180 for a comparable traditional film and filter stack. When utilized with a scintillator, the diagnostic can be run in high-rep-rate (>Hz rate) mode to recover nine proton energy bins. We also demonstrate a deep learning-based method to analyze data from synthetic PROBIES images with greater than 95% accuracy on sub-millisecond timescales and retrained with experimental data to analyze real-world images on sub-millisecond time-scales with comparable accuracy.

2.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797905

RESUMO

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

3.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

4.
Phys Rev E ; 102(2-1): 023210, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942378

RESUMO

This paper presents a study on hotspot parameters in indirect-drive, inertially confined fusion implosions as they proceed through the self-heating regime. The implosions with increasing nuclear yield reach the burning-plasma regime, hotspot ignition, and finally propagating burn and ignition. These implosions span a wide range of alpha heating from a yield amplification of 1.7-2.5. We show that the hotspot parameters are explicitly dependent on both yield and velocity and that by fitting to both of these quantities the hotspot parameters can be fit with a single power law in velocity. The yield scaling also enables the hotspot parameters extrapolation to higher yields. This is important as various degradation mechanisms can occur on a given implosion at fixed implosion velocity which can have a large impact on both yield and the hotspot parameters. The yield scaling also enables the experimental dependence of the hotspot parameters on yield amplification to be determined. The implosions reported have resulted in the highest yield (1.73×10^{16}±2.6%), yield amplification, pressure, and implosion velocity yet reported at the National Ignition Facility.

5.
Rev Sci Instrum ; 89(10): 10I138, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399709

RESUMO

An important diagnostic value of a shot at the National Ignition Facility is the resultant center-of-mass motion of the imploding capsule. This residual velocity reduces the efficiency of converting laser energy into plasma temperature. A new analysis method extracts the effective hot spot motion by using information from multiple neutron time-of-flight (nToF) lines-of-sight (LoSs). This technique fits a near Gaussian spectrum to the nToF scope traces and overcomes reliance on models to relate the plasma temperature to the mean energy of the emitted neutrons. This method requires having at least four nToF LoSs. The results of this analysis will be compared to an approach where each LoS is analyzed separately and a model is used to infer the mean energy of the emitted neutrons.

6.
Phys Rev Lett ; 121(13): 135001, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312055

RESUMO

To reach the pressures and densities required for ignition, it may be necessary to develop an approach to design that makes it easier for simulations to guide experiments. Here, we report on a new short-pulse inertial confinement fusion platform that is specifically designed to be more predictable. The platform has demonstrated 99%+0.5% laser coupling into the hohlraum, high implosion velocity (411 km/s), high hotspot pressure (220+60 Gbar), and high cold fuel areal density compression ratio (>400), while maintaining controlled implosion symmetry, providing a promising new physics platform to study ignition physics.

7.
Rev Sci Instrum ; 87(11): 11E327, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910341

RESUMO

The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

8.
Rev Sci Instrum ; 87(11): 11E715, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910388

RESUMO

The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

9.
Rev Sci Instrum ; 87(11): 11E201, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910489

RESUMO

We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 µm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 µm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

10.
Phys Rev E ; 94(2-1): 021202, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627237

RESUMO

An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T_{ion} are observed and the difference is seen to increase with increasing apparent DT T_{ion}. The line-of-sight rms variations of both DD and DT T_{ion} are small, ∼150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T_{ion}. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T_{ion} greater than the DD T_{ion}, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA