Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
N Am Spine Soc J ; 18: 100320, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590972

RESUMO

Background: Total disc replacement (TDR) is widely used in the treatment of cervical and lumbar spine pathologies. Although TDR infection, particularly delayed infection, is uncommon, the results can be devastating, and consensus on clinical management remains elusive. In this review of the literature, we asked: (1) What are the reported rates of TDR infection; (2) What are the clinical characteristics of TDR infection; and (3) How has infection been managed for TDR patients? Methods: We performed a search of the literature using PubMed and Embase to identify studies that reported TDR infection rates, the identification and management of TDR infection, or TDR failures with positive cultures. Twenty database studies (17 focusing on the cervical spine and 3 on the lumbar spine) and 10 case reports representing 15 patients were reviewed along with device Summary of Safety and Effectiveness Data reports. Results: We found a lack of clarity regarding how infection was diagnosed, indicating a variation in clinical approach and highlighting the need for a standard definition of TDR infection. Furthermore, while reported infection rates were low, the absence of a clear definition prevented robust data analysis and may contribute to underreporting in the literature. We found that treatment strategy and success rely on several factors including patient symptoms and time to onset, microorganism type, and implant positioning/stability. Conclusions: Although treatment strategies varied throughout the extant literature, common practices in eliminating infection and reconstructing the spine emerged. The results will inform future work on the creation of a more robust definition of TDR infection and as well as recommendations for management.

2.
Eur J Orthop Surg Traumatol ; 34(1): 251-269, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37439887

RESUMO

AIM: Polymers and metals, such as polyethylene (PE) and cobalt chrome (CoCr), are common materials used in thumb-based joint implants, also known as CMC (Carpometacarpal) arthroplasty. The purpose of this review was to investigate the reported failure modes related to wear debris from these type of materials in CMC implants. The impact of wear debris on clinical outcomes of CMC implants was also examined. Potential adverse wear conditions and inflammatory particle characteristics were also considered. METHOD: A literature search was performed using PRISMA guidelines and 55 studies were reviewed including 49 cohort studies and 6 case studies. Of the 55 studies, 38/55 (69%) focused on metal-on-polyethylene devices, followed by metal-on-metal (35%), and metal-on-bone (4%). RESULTS: The summarized data was used to determine the frequency of failure modes potentially related to wear debris from metals and/or polymers. The most commonly reported incidents potentially relating to debris were implant loosening (7.1%), osteolysis (1.2%) and metallosis (0.6%). Interestingly the reported mechanisms behind osteolysis and loosening greatly varied. Inflammatory reactions, while rare, were generally attributed to metallic debris from metal-on-metal devices. Mechanisms of adverse wear conditions included implant malpositioning, over-tensioning, high loading for active patients, third-body debris, and polyethylene wear-through. No specific examination of debris particle characterization was found, pointing to a gap in the literature. CONCLUSION: This review underscores the types of failure modes associated with wear debris in CMC implants. It was found that failure rates and adverse wear conditions of CMC implants of any design are low and the exact relationship between wear debris and implant incidences, such as osteolysis and loosening remains uncertain. The authors note that further research and specific characterization is required to understand the relationship between debris and implant failure.


Assuntos
Osteólise , Humanos , Osteólise/etiologia , Polegar/cirurgia , Próteses e Implantes/efeitos adversos , Polietileno , Artroplastia/efeitos adversos , Metais , Falha de Prótese
3.
J Arthroplasty ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38070717

RESUMO

BACKGROUND: Extensive research has reported on fretting corrosion and material loss for a variety of metal taper interfaces in orthopedic devices. For modular acetabular shell-liner constructs, the interfaces studied thus far have consisted of mixed-metal pairings, and the risk of fretting corrosion and material loss for the all-titanium (Ti) shell-liner taper junction in one ceramic-on-ceramic (COC) design remains poorly understood. We asked: do Ti shell-liner taper interfaces in COC total hip arthroplasty devices show in vivo evidence of (1) fretting and/or corrosion, and (2) quantifiable potential material loss? METHODS: We examined 22 shell-liner pairs and 22 single liners from retrieved COC components. The taper interface surfaces were assessed for fretting corrosion using a semiquantitative scoring method and imaged with scanning electron microscopy. A subcohort of components was measured with a coordinate measuring machine, and volumetric material loss and maximum wear depth were calculated. RESULTS: Fretting corrosion at the taper interfaces was minimal to mild for 95% of liners and 100% of shells. Imaging revealed fretting marks within a band of corrosion on some implants and evidence of corrosion not in the proximity of mechanical damage. Estimated material loss ranged from 0.2 to 1.3 mm3 for liners, and 0.5 to 1.1 mm3 for shells. Maximum wear depth for all components was 0.03 mm or less. CONCLUSIONS: Our results indicate that, compared to other taper junctions in total joint arthroplasty, the risk of corrosion and material loss may be minimal for Ti shell-liner interfaces.

4.
Bioengineering (Basel) ; 10(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37892928

RESUMO

BACKGROUND: A novel, lumbar total joint replacement (TJR) design has been developed to treat degeneration across all three columns of the lumbar spine (anterior, middle, and posterior columns). Thus far, there has been no in vitro studies that establish the preclinical safety profile of the vitamin E-stabilized highly crosslinked polyethylene (VE-HXLPE) lumbar TJR relative to historical lumbar anterior disc replacement for the known risks of wear and impingement faced by all motion preserving designs for the lumbar spine. QUESTIONS/PURPOSE: In this study we asked, (1) what is the wear performance of the VE-HXLPE lumbar TJR under ideal, clean conditions? (2) Is the wear performance of VE-HXLPE in lumbar TJR sensitive to more aggressive, abrasive conditions? (3) How does the VE-HXLPE lumbar TJR perform under impingement conditions? METHOD: A lumbar TJR with bilateral VE-HXLPE superior bearings and CoCr inferior bearings was evaluated under clean, impingement, and abrasive conditions. Clean and abrasive testing were guided by ISO 18192-1 and impingement was assessed as per ASTM F3295. For abrasive testing, CoCr components were scratched to simulate in vivo abrasion. The devices were tested for 10 million cycles (MC) under clean conditions, 5 MC under abrasion, and 1 MC under impingement. RESULT: Wear rates under clean and abrasive conditions were 1.2 ± 0.5 and 1.1 ± 0.6 mg/MC, respectively. The VE-HXLPE components demonstrated evidence of burnishing and multidirectional microscratching consistent with microabrasive conditions with the cobalt chromium spherical counterfaces. Under impingement, the wear rates ranged between 1.7 ± 1.1 (smallest size) and 3.9 ± 1.1 mg/MC (largest size). No functional or mechanical failure was observed across any of the wear modes. CONCLUSIONS: Overall, we found that that a VE-HXLPE-on-CoCr lumbar total joint replacement design met or exceeded the benchmarks established by traditional anterior disc replacements, with wear rates previously reported in the literature ranging between 1 and 15 mg/MC. CLINICAL RELEVANCE: The potential clinical benefits of this novel TJR design, which avoids long-term facet complications through facet removal with a posterior approach, were found to be balanced by the in vitro tribological performance of the VE-HXLPE bearings. Our encouraging in vitro findings have supported initiating an FDA-regulated clinical trial for the design which is currently under way.

5.
J Mech Behav Biomed Mater ; 145: 105981, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481803

RESUMO

In this study, the Taguchi method was utilized to optimize fused filament fabrication (FFF) additive manufacturing with the goal of maximizing the flexural strength of 3D printed polyaryletherketone specimens. We analyzed 3D printed (3DP) carbon fiber reinforced poly-etherketoneketone (CFR PEKK), 3D printed and pressed (3DP + P) CFR PEKK, and injection molded medical grade polyetheretherketone (PEEK) as a control. Fracture surfaces were analyzed via scanning electron microscopy (SEM). The parameters that were varied in the optimization included nozzle diameter, layer height, print speed, raster angle, and nozzle temperature. We analyzed the flexural strength and flexural modulus determined from 3-point bending (ASTM D790). Using Taguchi optimization, the signal to noise ratio (SNR) was calculated to determine the relationship between the input parameters and flexural strength and to determine optimal print settings. Results were confirmed with analysis of variance (ANOVA). The raster angle and layer height were determined to have the greatest impact on the flexural strength of specimens printed in the FFF process for 3DP CFR PEKK. The optimized printing parameters were found to be 0/90 Raster Angle, 0.25 mm layer height, 0.8 mm Nozzle Diameter, 375 °C nozzle temperature, and 1100 mm/min print speed. The optimized 3DP CFR PEKK test samples had a flexural strength of 111.3 ± 5.3 MPa and a flexural modulus of 3.5 GPa. 3DP + P CFR PEKK samples had a flexural strength of 257.2 ± 17.8 MPa and a flexural modulus of 8.2 GPa. Statistical comparisons between means demonstrated that pressing significantly improves both flexural strength and flexural modulus of 3DP CFR PEKK. The results of this study support the hypothesis that post consolidation of 3DP specimens improves mechanical properties. Post-processing composites via pressing may allow greater design freedom within the 3DP process while improving mechanical properties.


Assuntos
Impressão Tridimensional , Fibra de Carbono , Teste de Materiais , Propriedades de Superfície
6.
J Arthroplasty ; 38(9): 1885-1891, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36813217

RESUMO

BACKGROUND: The incorporation of antioxidants into highly cross-linked polyethylene (HXLPE) has emerged as an alternative to postirradiation thermal treatments for improving oxidation resistance. Currently, use of antioxidant stabilized HXLPE (AO-XLPE) in total knee arthroplasty (TKA) is increasing. In this literature review, we asked: (1) How does the clinical performance of AO-XLPE compare to conventional ultra-high molecular weight polyethylene (UHMWPE) or HXLPE for TKA? (2) What material changes occur in vivo for AO-XLPE in TKA? and (3) What is the risk of revision for AO-XLPE in TKA? METHODS: We performed a search of the literature according to the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines using PubMed and Embase. Included studies reported the in vivo behavior of vitamin E-doped polyethylene in TKA. We reviewed 13 studies. RESULTS: Across the studies, clinical results including revision rates, patient-reported outcome measurement scores, and the occurrence of osteolysis or radiolucent lines tended to be similar for AO-XLPE as compared to conventional UHMWPE or HXLPE controls. In retrieval analyses, AO-XLPE exhibited excellent resistance to oxidation and typical surface damage. Survival rates were positive and not significantly different from conventional UHMWPE or HXLPE. There were no cases of osteolysis for AO-XLPE and no revision due to polyethylene wear reported. CONCLUSION: The purpose of this review was to provide a comprehensive overview of the literature regarding the clinical effectiveness of AO-XLPE in TKA. Overall, the results of our review indicated positive early-to mid-term clinical performance for AO-XLPE in TKA and similar outcomes as compared to conventional UHMWPE and HXLPE.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Prótese de Quadril , Osteólise , Humanos , Polietileno , Antioxidantes , Falha de Prótese , Desenho de Prótese
7.
J Arthroplasty ; 38(5): 970-979, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36481286

RESUMO

BACKGROUND: Vitamin E stabilization was introduced to improve the oxidative stability, wear resistance, and mechanical properties of highly crosslinked polyethylene (HXLPE). In this literature review, we asked: (1) How has vitamin E-stabilized HXLPE (VEPE) performed in vivo for total hip arthroplasty (THA) and how does it compare with conventional ultra-high molecular weight polyethylene (UHMWPE) and HXLPE without vitamin E; and (2) Is there an apparent difference in the clinical performance of VEPE created by blending versus diffusion? METHODS: We performed a systematic search of the literature according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines using PubMed and Embase. Included studies reported the in vivo behavior of VEPE in THA. We reviewed 41 studies. RESULTS: For all studies that compared polyethylene with and without VE stabilization, outcomes for VEPE were either equivalent or superior to the control group (for HXLPE without VE and conventional UHMWPE controls, respectively). Hip insert wear rates were generally less than 0.1 mm/year and in most cases were less than 0.05 mm/year. No VEPE components were revised for osteolysis or adverse outcomes specific to VE incorporation. CONCLUSION: Across the literature, we found that VEPE was reported to be clinically effective for THA applications, with much of the research indicating positive clinical outcomes and lower or equivalent wear rates compared to conventional UHMWPE and HXLPE controls without VE. Instances of early component fracture were reported, but have multiple potential causes. There is a gap in the literature for comparison of blended and diffused components, so the in vivo impact of VE incorporation method remains to be seen. Overall, this study provides a comprehensive summary of VEPE clinical performance for THA and may serve as a resource for future investigations.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Artroplastia de Quadril/efeitos adversos , Polietileno/efeitos adversos , Prótese de Quadril/efeitos adversos , Vitamina E , Desenho de Prótese , Falha de Prótese
8.
J Mech Behav Biomed Mater ; 133: 105345, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809464

RESUMO

Additively manufactured structures designed from triply periodic minimal surfaces (TPMSs) have been receiving attention for their potential uses in the medical, aerospace, and automobile industries. Understanding how these complex geometries can be designed to achieve particular architectural and mechanical properties is essential for tuning their function to certain applications. In this study, we created design tools for visualizing the interplay between TPMS design parameters and resulting architecture and aimed to validate a model of the relationship between structure architecture and Young's modulus. A custom MATLAB script was written to analyze structural properties for families of Schoen gyroid and Schwarz diamond structures, and a numerical homogenization scheme was performed to predict the effective Young's moduli of the structures based on their architecture. Our modeling methods were validated experimentally with polyetheretherketone (PEEK) structures created using material extrusion additive manufacturing. The architectural characteristics of the structures were determined using micro-computed tomography, and compression testing was performed to determine yield strength and Young's modulus. Two different initial build orientations were tested to determine the behavior both perpendicular and parallel to the layer deposition direction (referred to as z-direction and xy-direction, respectively). The z-direction Young's modulus ranged from 289.7 to 557.5 MPa and yield strength ranged from 10.12 to 20.3 MPa. For the xy-direction, Young's modulus ranged from 133.8 to 416.4 MPa and yield strength ranged from 3.8 to 12.2 MPa. For each initial build orientation, the mechanical properties were found to decrease with increasing porosity, and failure occurred due to both strut bending and interlayer debonding. The mechanical properties predicted by the modeling agreed with the values found for z-direction samples (difference 2-11%) but less so for xy-direction samples (difference 27-62%) due to weak interlayer bonding and print path irregularities. Ultimately, the findings presented here provide better understanding of the range of properties achievable for additive manufacturing of PEEK and encouraging results for a TPMS architecture-property model.


Assuntos
Benzofenonas , Polímeros , Cetonas , Polietilenoglicóis , Porosidade , Microtomografia por Raio-X
9.
J Biomed Mater Res B Appl Biomater ; 109(11): 1924-1941, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33856114

RESUMO

Additive manufacturing (AM) of high temperature polymers, specifically polyaryletherketones (PAEK), is gaining significant attention for medical implant applications. As 3D printing systems evolve toward point of care manufacturing, research on this topic continues to expand. Specific regulatory guidance is being developed for the safe management of 3D printing systems in a hospital environment. PAEK implants can benefit from many advantages of AM such as design freedom, material and antibacterial drug incorporation, and enhanced bioactivity provided by cancellous bone-like porous designs. In addition to AM PAEK bioactivity, the biomechanical strength of 3D printed implants is crucial to their performance and thus widely studied. In this review, we discuss the printing conditions that have been investigated so far for additively manufactured PAEK implant applications. The effect of processing parameters on the biomechanical strength of implants is summarized, and the bioactivity of PAEKs, along with material and drug incorporation, is also covered in detail. Finally, the therapeutic areas in which 3D printed PAEK implants are investigated and utilized are reviewed.


Assuntos
Materiais Biocompatíveis/química , Substitutos Ósseos/química , Osseointegração , Polímeros/química , Impressão Tridimensional , Próteses e Implantes , Humanos , Porosidade
10.
J Arthroplasty ; 36(7S): S80-S87, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33610405

RESUMO

BACKGROUND: Dual mobility (DM) articulations were introduced for total hip arthroplasty to reduce the risk of instability for patients who have a high risk of dislocation. The use of DM constructs in both primary and revision total hip arthroplasty has been steadily increasing, leading to concerns regarding potential risks of fretting corrosion, polyethylene wear, metal release, and failure due to component positioning. METHODS: A total of 56 retrieved DM constructs were collected. The inner and outer polyethylene liner surfaces were assessed for 7 damage mechanisms, and fretting corrosion was evaluated for the femoral stem, head, and modular liner. Three polyethylene liners with the greatest amounts of embedded debris were examined using scanning electron microscopy. Energy-dispersive X-ray spectroscopy was used to determine the elemental content of the debris. Acetabular cup orientation was analyzed radiographically using the EBRA (Einzel-Bild-Roentgen-Analyse) method. RESULTS: The devices were revised most frequently for infection (36%), loosening (21%), and instability/dislocation (18%). The most common polyethylene damage mechanisms were scratching, pitting, burnishing, and embedded debris, and no difference in total damage was found between primary and revision cases. Scanning electron microscopy/energy-dispersive X-ray spectroscopy revealed that debris morphology and composition were consistent with porous titanium coating, resulting from cup loosening or broken screws and augments. A total of 71% and 50% of the constructs were determined to be within the Lewinnek safe zone for inclination and anteversion, respectively. CONCLUSION: The most notable mechanisms of surface damage were due to third-body debris, especially for the polyethylene surfaces which articulate against cobalt-chromium femoral heads and acetabular liners. Scratching of the femoral head and the metal liner from this debris may support the clinical use of ceramic for DM bearing surfaces in the future.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Artroplastia de Quadril/efeitos adversos , Corrosão , Prótese de Quadril/efeitos adversos , Humanos , Polietileno , Desenho de Prótese , Falha de Prótese
11.
J Biomed Mater Res B Appl Biomater ; 109(10): 1436-1454, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33484102

RESUMO

For Ti6Al4V orthopedic and spinal implants, osseointegration is often achieved using complex porous geometries created via additive manufacturing (AM). While AM porous titanium (pTi) has shown clinical success, concerns regarding metallic implants have spurred interest in alternative AM biomaterials for osseointegration. Insights regarding the evaluation of these new materials may be supported by better understanding the role of preclinical testing for AM pTi. We therefore asked: (a) What animal models have been most commonly used to evaluate AM porous Ti6Al4V for orthopedic bone ingrowth; (b) What were the primary reported quantitative outcome measures for these models; and (c) What were the bone ingrowth outcomes associated with the most frequently used models? We performed a systematic literature search and identified 58 articles meeting our inclusion criteria. We found that AM pTi was evaluated most often using rabbit and sheep femoral condyle defect (FCD) models. Additional ingrowth models including transcortical and segmental defects, spinal fusions, and calvarial defects were also used with various animals based on the study goals. Quantitative outcome measures determined via histomorphometry including ''bone ingrowth'' (range: 3.92-53.4% for rabbit/sheep FCD) and bone-implant contact (range: 9.9-59.7% for rabbit/sheep FCD) were the most common. Studies also used 3D imaging to report outcomes such as bone volume fraction (BV/TV, range: 4.4-61.1% for rabbit/sheep FCD), and push-out testing for outcomes such as maximum removal force (range: 46.6-3092 N for rabbit/sheep FCD). Though there were many commonalities among the study methods, we also found significant heterogeneity in the outcome terms and definitions. The considerable diversity in testing and reporting may no longer be necessary considering the reported success of AM pTi across all model types and the ample literature supporting the rabbit and sheep as suitable small and large animal models, respectively. Ultimately, more standardized animal models and reporting of bone ingrowth for porous AM materials will be useful for future studies.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Titânio/química , Animais , Osso e Ossos , Fêmur , Humanos , Teste de Materiais , Modelos Animais , Osseointegração , Avaliação de Resultados em Cuidados de Saúde , Porosidade , Impressão Tridimensional , Próteses e Implantes , Coelhos , Ovinos , Fusão Vertebral , Engenharia Tecidual
12.
J Biomed Mater Res B Appl Biomater ; 108(1): 263-271, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31012261

RESUMO

The ability to characterize implant debris in conjunction with corresponding immune and tissue-destructive responses renders retrieval analysis as an important tool for evaluating orthopedic devices. We applied advanced analytics and in silico approaches to illustrate the retrieval-based potential to elucidate host responses and enable discovery of corresponding biomarkers indicative of in vivo implant performance. Hip retrieval analysis was performed using variables based on immunostaining, polarized microscopy, and fretting-corrosion and oxidation analyses. Statistical analyses were performed in R. Hierarchical/k-means clustering and principal component analysis were used for data analysis and visualization. Correlation Engine (CE) and Ingenuity Pathway Analysis (IPA) were employed for in silico corroboration of putative biomarkers. Higher giant cell and histiocyte scores and positivity for CD68 and CD3 indicating infiltration with macrophages and T-cells, respectively, were detected mainly among older generation hips with higher ultra-high-molecular-weight-polyethylene loads. Our in silico analysis using pre-existing data on wear particle-induced loosening substantiated the role of CD68 in implant-induced innate responses and identified the CD68-related molecular signature that can be indicative of development of aseptic loosening and can be further corroborated for diagnostic/prognostic testing in clinical setting. Thus, this study confirmed the great potential of advanced analytics and in silico approaches for enhancing retrieval analysis applications to discovery of new biomarkers for optimizing implant-related preclinical testing and clinical management. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:263-271, 2020.


Assuntos
Simulação por Computador , Prótese de Quadril/efeitos adversos , Falha de Prótese , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
J Arthroplasty ; 34(12): 3088-3093, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31416742

RESUMO

BACKGROUND: In order to improve oxidation resistance, antioxidants such as vitamin-E are added to polyethylene used in the bearing surfaces of orthopedic components. Currently, little is known about the efficacy of this treatment in vivo. This study therefore reports on the reasons for revision, surface damage mechanisms, and oxidation of retrieved vitamin E-stabilized highly crosslinked polyethylene (HXLPE) for total knee arthroplasty. METHODS: We examined 103 retrieved knee inserts fabricated from vitamin E (VE)-stabilized HXLPE and 67 fabricated from remelted HXLPE as a control. The implantation times were 1.2 ± 1.3 and 1.5 ± 1.3 years for the VE and control cohorts, respectively. The inserts were evaluated for 7 surface damage mechanisms using a semiquantitative scoring method and analyzed for oxidation using Fourier-transform infrared spectroscopy. Reasons for revision were also assessed using operative notes created at time of retrieval. RESULTS: Both groups were revised primarily for instability, infection, and loosening. Burnishing, pitting, and scratching were the most common damage mechanisms observed, with the VE cohort demonstrating less surface damage than the control. Measured oxidation for the cohort was low, with a median oxidation index of 0.09 ± .05 for the articulating surface, 0.05 ± 0.06 for the backside, 0.08 ± 0.06 for the anterior/posterior surfaces, and 0.08 ± 0.05 for the stabilizing post. As compared to the control cohort, oxidation tended to be less for the VE group at the articulating (P < .001) and backside (P = .003) surfaces, although the median differences were minimal and may not be clinically significant. CONCLUSION: The results indicate positive fatigue damage resistance and oxidation resistance for the retrieved VE-stabilized total knee arthroplasty inserts.


Assuntos
Antioxidantes/farmacologia , Prótese do Joelho , Polietileno/química , Falha de Prótese/etiologia , Vitamina E/farmacologia , Idoso , Artroplastia do Joelho/instrumentação , Feminino , Humanos , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Oxirredução , Desenho de Prótese , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Arthroplasty ; 34(10): 2479-2486, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31227303

RESUMO

BACKGROUND: Clinical concern exists regarding fretting corrosion and material loss from taper junctions in orthopedic devices, with previous research focusing on the modular components from total hip arthroplasty. Comparatively little has been published regarding the fretting corrosion and material loss in modular knee devices. The purpose of this study is to evaluate fretting corrosion damage and quantify material loss for conical total knee arthroplasty taper interfaces. METHODS: Stem tapers of 166 retrieved modular knee devices were evaluated for fretting corrosion using a semiquantitative scoring method. High precision profilometry was then used to determine volumetric material loss and maximum wear depth for a subset of 37 components (implanted for 0.25-18.76 years). Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize the observed damage. RESULTS: Mild to severe fretting corrosion was observed on the majority of tapers, with 23% receiving a maximum visually determined damage score of 4. The median rate of volumetric material loss was 0.11 mm3/y (range 0.00-0.76) for femoral components (both cone and bore taper surfaces combined) and 0.01 mm3 (range 0.00-8.10) for tibial components. Greater rates of material loss were associated with mixed metal pairings. There was a strong correlation between visual fretting corrosion score and calculated material loss (ρ = 0.68, P < .001). Scanning electron microscopy revealed varying degrees of scratching, wear, fretting corrosion, and instances of cracking with morphology not consistent with fretting corrosion, wear, or fatigue. CONCLUSION: Although visual evidence of fretting corrosion damage was prevalent and correlated with taper material loss, the measured volumetric material loss was low compared with prior reports from total hip arthroplasty.


Assuntos
Artroplastia do Joelho/instrumentação , Prótese de Quadril , Falha de Prótese , Idoso , Corrosão , Feminino , Humanos , Masculino , Teste de Materiais , Metais , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Fraturas Periprotéticas , Desenho de Prótese , Espectrometria por Raios X , Tíbia/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA