Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 9(7): 890-902, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39170954

RESUMO

The serotonin pathway has long been proposed as a promising target for pulmonary arterial hypertension (PAH)-a progressive and uncurable disease. We developed a highly specific inhibitor of the serotonin synthesizing enzyme tryptophan hydroxylase 1 (TPH1), TPT-001 (TPHi). In this study, the authors sought to treat severe PAH in the Sugen/hypoxia (SuHx) rat model with the oral TPHi TPT-001. Male Sprague Dawley rats were divided into 3 groups: 1) ConNx, control animals; 2) SuHx, injected subcutaneously with SU5416 and exposed to chronic hypoxia for 3 weeks, followed by 6 weeks in room air; and 3) SuHx+TPHi, SuHx animals treated orally with TPHi for 5 weeks. Closed-chest right- and left heart catheterization and echocardiography were performed. Lungs were subject to histologic and mRNA sequencing analyses. Compared with SuHx-exposed rats, which developed severe PAH and right ventricular (RV) dysfunction, TPHi-treated SuHx rats had greatly lowered RV systolic (mean ± SEM: 41 ± 2.3 mm Hg vs 86 ± 6.5 mm Hg; P < 0.001) and end-diastolic (mean ± SEM: 4 ± 0.7 mm Hg vs 14 ± 1.7 mm Hg; P < 0.001) pressures, decreased RV hypertrophy and dilation (all not significantly different from control rats), and reversed pulmonary vascular remodeling. We identified perivascular infiltration of CD3+ T cells and proinflammatory F4/80+ and CD68+ macrophages and proliferating cell nuclear antigen-positive alveolar epithelial cells all suppressed by TPHi treatment. Whole-lung mRNA sequencing in SuHx rats showed distinct gene expression patterns related to pulmonary arterial smooth muscle cell proliferation (Rpph1, Lgals3, Gata4), reactive oxygen species, inflammation (Tnfsrf17, iNOS), and vasodilation (Pde1b, Kng1), which reversed expression with TPHi treatment. Inhibition of TPH1 with a new class of drugs (here, TPT-001) has the potential to attenuate or even reverse severe PAH and associated RV dysfunction in vivo by blocking the serotonin pathway.

2.
PLoS One ; 19(7): e0302704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39074100

RESUMO

Eps15 (epidermal growth factor receptor pathway substrate 15) homology domain-containing proteins (EHDs) comprise a family of eukaryotic dynamin-related ATPases that participate in various endocytic membrane trafficking pathways. Dysregulation of EHDs function has been implicated in various diseases, including cancer. The lack of small molecule inhibitors which acutely target individual EHD members has hampered progress in dissecting their detailed cellular membrane trafficking pathways and their function during disease. Here, we established a Malachite green-based assay compatible with high throughput screening to monitor the liposome-stimulated ATPase of EHD4. In this way, we identified a drug-like molecule that inhibited EHD4's liposome-stimulated ATPase activity. Structure activity relationship (SAR) studies indicated sites of preferred substitutions for more potent inhibitor synthesis. Moreover, the assay optimization in this work can be applied to other dynamin family members showing a weak and liposome-dependent nucleotide hydrolysis activity.


Assuntos
Adenosina Trifosfatases , Lipossomos , Lipossomos/metabolismo , Lipossomos/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Humanos , Relação Estrutura-Atividade , Dinaminas/metabolismo , Dinaminas/antagonistas & inibidores , Dinaminas/química , Corantes de Rosanilina/química , Hidrólise
4.
RSC Med Chem ; 15(4): 1176-1188, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665834

RESUMO

The EU-OPENSCREEN (EU-OS) European Research Infrastructure Consortium (ERIC) is a multinational, not-for-profit initiative that integrates high-capacity screening platforms and chemistry groups across Europe to facilitate research in chemical biology and early drug discovery. Over the years, the EU-OS has assembled a high-throughput screening compound collection, the European Chemical Biology Library (ECBL), that contains approximately 100 000 commercially available small molecules and a growing number of thousands of academic compounds crowdsourced through our network of European and non-European chemists. As an extension of the ECBL, here we describe the computational design, quality control and use case screenings of the European Fragment Screening Library (EFSL) composed of 1056 mini and small chemical fragments selected from a substructure analysis of the ECBL. Access to the EFSL is open to researchers from both academia and industry. Using EFSL, eight fragment screening campaigns using different structural and biophysical methods have successfully identified fragment hits in the last two years. As one of the highlighted projects for antibiotics, we describe the screening by Bio-Layer Interferometry (BLI) of the EFSL, the identification of a 35 µM fragment hit targeting the beta-ketoacyl-ACP synthase 2 (FabF), its binding confirmation to the protein by X-ray crystallography (PDB 8PJ0), its subsequent rapid exploration of its surrounding chemical space through hit-picking of ECBL compounds that contain the fragment hit as a core substructure, and the final binding confirmation of two follow-up hits by X-ray crystallography (PDB 8R0I and 8R1V).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA