Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(14): e70028, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39377685

RESUMO

Patients with congenital heart disease (CHD) demonstrate altered structural brain network connectivity. However, there is large variability between reported results and little information is available to identify those patients at highest risk for brain alterations. Thus, we aimed to investigate if network connectivity measures were associated with the individual patient's cumulative load of clinical risk factors and with family-environmental factors in a cohort of adolescents with CHD. Further, we investigated associations with executive function impairments. In 53 adolescents with CHD who underwent open-heart surgery during infancy, and 75 healthy controls, diffusion magnetic resonance imaging and neuropsychological assessment was conducted at a mean age of 13.2 ± 1.3 years. Structural connectomes were constructed using constrained spherical deconvolution tractography. Graph theory and network-based statistics were applied to investigate network connectivity measures. A cumulative clinical risk (CCR) score was built by summing up binary risk factors (neonatal, cardiac, neurologic) based on clinically relevant thresholds. The role of family-environmental factors (parental education, parental mental health, and family function) was investigated. An age-adjusted executive function summary score was built from nine neuropsychological tests. While network integration and segregation were preserved in adolescents with CHD, they showed lower edge strength in a dense subnetwork. A higher CCR score was associated with lower network segregation, edge strength, and executive function performance. Edge strength was particularly reduced in a subnetwork including inter-frontal and fronto-parietal-thalamic connections. There was no association with family-environmental factors. Poorer executive functioning was associated with lower network integration and segregation. We demonstrated evidence for alterations of network connectivity strength in adolescents with CHD - particularly in those patients who face a cumulative exposure to multiple clinical risk factors over time. Quantifying the cumulative load of risk early in life may help to better predict trajectories of brain development in order to identify and support the most vulnerable patients as early as possible.


Assuntos
Conectoma , Função Executiva , Cardiopatias Congênitas , Rede Nervosa , Humanos , Adolescente , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/complicações , Função Executiva/fisiologia , Masculino , Feminino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Fatores de Risco , Criança , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Testes Neuropsicológicos , Imagem de Difusão por Ressonância Magnética
2.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991274

RESUMO

Spina bifida affects spinal cord and cerebral development, leading to motor and cognitive delay. We investigated whether there are associations between thalamocortical connectivity topography, neurological function, and developmental outcomes in open spina bifida. Diffusion tensor MRI was used to assess thalamocortical connectivity in 44 newborns with open spina bifida who underwent prenatal surgical repair. We quantified the volume of clusters formed based on the strongest probabilistic connectivity to the frontal, parietal, and temporal cortex. Developmental outcomes were assessed using the Bayley III Scales, while the functional level of the lesion was assessed by neurological examination at 2 years of age. Higher functional level was associated with smaller thalamo-parietal, while lower functional level was associated with smaller thalamo-temporal connectivity clusters (Bonferroni-corrected P < 0.05). Lower functional levels were associated with weaker thalamic temporal connectivity, particularly in the ventrolateral and ventral anterior nuclei. No associations were found between thalamocortical connectivity and developmental outcomes. Our findings suggest that altered thalamocortical circuitry development in open spina bifida may contribute to impaired lower extremity function, impacting motor function and independent ambulation. We hypothesize that the neurologic function might not merely be caused by the spinal cord lesion, but further impacted by the disruption of cerebral neuronal circuitry.


Assuntos
Espinha Bífida Cística , Disrafismo Espinal , Gravidez , Feminino , Recém-Nascido , Humanos , Espinha Bífida Cística/complicações , Disrafismo Espinal/diagnóstico por imagem , Disrafismo Espinal/complicações , Disrafismo Espinal/psicologia , Medula Espinal/patologia , Imagem de Tensor de Difusão , Tálamo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA