Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Clin Microbiol ; 59(7): e0231320, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33910962

RESUMO

In vivo diagnostic imaging of bacterial infections is currently reliant on targeting their metabolic pathways, an ineffective method to identify microbial species with low metabolic activity. Here, we establish HS-198 as a small-molecule fluorescent conjugate that selectively targets the highly conserved bacterial protein HtpG (high-temperature protein G), within Borrelia burgdorferi, the bacterium responsible for Lyme disease. We describe the use of HS-198 to target morphologic forms of B. burgdorferi in both the logarithmic growth phase and the metabolically dormant stationary phase as well as in inactivated spirochetes. Furthermore, in a murine infection model, systemically injected HS-198 identified B. burgdorferi as revealed by imaging in postnecropsy tissue sections. These findings demonstrate how small-molecule probes directed at conserved bacterial protein targets can function to identify the microbe using noninvasive imaging and potentially as scaffolds to deliver antimicrobial agents to the pathogen.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Proteínas de Bactérias/genética , Diagnóstico por Imagem , Humanos , Doença de Lyme/diagnóstico , Camundongos
2.
Mol Cancer Res ; 19(5): 886-899, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33514658

RESUMO

The ERBB2 proto-oncogene is associated with an aggressive phenotype in breast cancer. Its role in hematologic malignancies is incompletely defined, in part because ERBB2 is not readily detected on the surface of cancer cells. We demonstrate that truncated ERBB2, which lacks the extracellular domain, is overexpressed on primary CD34+ myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cells compared with healthy hematopoietic cells. This overexpression of ERBB2 is associated with aberrant, oncogenic signaling with autophosphorylation of multiple tyrosine sites. Like in breast cancers, ERBB2 can exist as truncated isoforms p95ERBB2 and p110ERBB2 in MDS and AML. Neutralization of ERBB2 signaling with ERBB2 tyrosine kinase inhibitors (i.e., lapatinib, afatinib, and neratinib) increases apoptotic cell death and reduces human engraftment of MDS cells in mice at 21 weeks posttransplantation. Inhibition of ERBB2 modulates the expression of multiple pro- and anti-apoptotic mitochondrial proteins, including B-cell lymphoma 2 (BCL2). Dual blockade with ERBB2 and BCL2 inhibitors triggers additional reductions of BCL2 phosphorylation and myeloid cell leukemia-1 (MCL1) expression compared with single drug treatment. Dual therapy was synergistic at all tested doses, with a dose reduction index of up to 29 for lapatinib + venetoclax compared with venetoclax alone. Notably, these agents operated together and shifted cancer cells to a pro-apoptotic phenotype, resulting in increased mitochondrial cytochrome c release and activated caspase-3-mediated cell death. IMPLICATIONS: These findings warrant study of ERBB2 and BCL2 combination therapy in patients with MDS and AML. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/886/F1.large.jpg.


Assuntos
Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Apoptose , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor ErbB-2/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-32923873

RESUMO

PURPOSE: Next-generation sequencing (NGS) multigene panel testing has become widespread, including the Veterans Affairs (VA), through the VA National Precision Oncology Program (NPOP). The interpretation of genomic alterations remains a bottleneck for realizing precision medicine. We sought to examine the concordance for pathogenicity determination and clinical actionability of annotation services in NPOP. METHODS: Unique gene variants were generated from NGS gene panel results using two sequencing services. For each unique gene variant, annotations were provided through N-of-One (NoO), IBM Watson for Genomics (WfG), and OncoKB. Annotations for pathogenicity (all three sources) and actionability (WfG and OncoKB) were examined for concordance. Cohen's kappa statistic was calculated to measure agreement between annotation services. RESULTS: Among 1,227 NGS results obtained between 2015 and 2017, 1,388 unique variants were identified in 117 genes. The genes with the largest number of variants included TP53 (270), STK11 (92), and CDKN2A (81). The most common cancer type was lung adenocarcinoma (440), followed by colon adenocarcinoma (113). For pathogenic and likely pathogenic variants, there was 30% agreement between WfG and NoO (kappa, -0.26), 76% agreement between WfG and OncoKB (kappa, 0.22), and 42% agreement between NoO and OncoKB (kappa, -0.07). For level 1 drug actionability of gene variant-diagnosis combinations, there was moderate agreement between WfG and OncoKB (96.9%; kappa, 0.44), with 27 combinations identified as level 1 by both services, 58 by WfG alone, and 6 variants by OncoKB alone. CONCLUSION: There is substantial variability in pathogenicity assessment of NGS variants in solid tumors by annotation services. In addition, there was only moderate agreement in level 1 therapeutic actionability recommendations between WfG and OncoKB. Improvement in the precision of NGS multigene panel annotation is needed.

4.
PLoS One ; 15(7): e0235861, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706774

RESUMO

BACKGROUND: To support the rising need for testing and to standardize tumor DNA sequencing practices within the U.S. Department of Veterans Affairs (VA)'s Veterans Health Administration (VHA), the National Precision Oncology Program (NPOP) was launched in 2016. We sought to assess oncologists' practices, concerns, and perceptions regarding Next-Generation Sequencing (NGS) and the NPOP. MATERIALS AND METHODS: Using a purposive total sampling approach, oncologists who had previously ordered NGS for at least one tumor sample through the NPOP were invited to participate in semi-structured interviews. Questions assessed the following: expectations for the NPOP, procedural requirements, applicability of testing results, and the summative utility of the NPOP. Interviews were assessed using an open coding approach. Thematic analysis was conducted to evaluate the completed codebook. Themes were defined deductively by reviewing the direct responses to interview questions as well as inductively by identifying emerging patterns of data. RESULTS: Of the 105 medical oncologists who were invited to participate, 20 (19%) were interviewed from 19 different VA medical centers in 14 states. Five recurrent themes were observed: (1) Educational Efforts Regarding Tumor DNA Sequencing Should be Undertaken, (2) Pathology Departments Share a Critical Role in Facilitating Test Completion, (3) Tumor DNA Sequencing via NGS Serves as the Most Comprehensive Testing Modality within Precision Oncology, (4) The Availability of the NPOP Has Expanded Options for Select Patients, and (5) The Completion of Tumor DNA Sequencing through the NPOP Could Help Improve Research Efforts within VHA Oncology Practices. CONCLUSION: Medical oncologists believe that the availability of tumor DNA sequencing through the NPOP could potentially lead to an improvement in outcomes for veterans with metastatic solid tumors. Efforts should be directed toward improving oncologists' understanding of sequencing, strengthening collaborative relationships between oncologists and pathologists, and assessing the role of comprehensive NGS panels within the battery of precision tests.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Sequenciamento de Nucleotídeos em Larga Escala/normas , Neoplasias/genética , Oncologistas/psicologia , Análise de Sequência de DNA/normas , United States Department of Veterans Affairs , Adulto , Detecção Precoce de Câncer/normas , Feminino , Testes Genéticos/normas , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Medicina de Precisão/normas , Planos Governamentais de Saúde , Inquéritos e Questionários , Estados Unidos
5.
Artigo em Inglês | MEDLINE | ID: mdl-32914016

RESUMO

PURPOSE: The Veterans Health Administration (VHA) is the largest cancer care provider in the United States, with the added challenge of serving more than twice the percentage of patients with cancer in rural areas than the national average. The VHA established the National Precision Oncology Program in 2016 to implement and standardize the practice of precision oncology across the diverse VHA system. METHODS: Tumor or peripheral blood specimens from veterans with advanced solid tumors who were eligible for treatment were submitted for next-generation sequencing (NGS) at two commercial laboratories. Annotated results were generated by the laboratories and independently using IBM Watson for Genomics. Levels-of-evidence treatment recommendations were based on OncoKB criteria. RESULTS: From July 2016 to June 2018, 3,698 samples from 72 VHA facilities were submitted for NGS testing, of which 3,182 samples (86%) were successfully sequenced. Most samples came from men with lung, prostate, and colorectal cancers. Thirty-four percent of samples were from patients who lived in a rural area. TP53, ATM, and KRAS were among the most commonly mutated genes. Approximately 70% of samples had at least one actionable mutation, with clinical trials identified as the recommended option in more than 50%. Mutations in genes associated with a neuroendocrine prostate cancer phenotype were expressed at increased frequency among veterans than in the general population. The most frequent therapies prescribed in response to NGS testing were immune checkpoint inhibitors, EGFR kinase inhibitors, and PARP inhibitors. CONCLUSION: Clinical implementation of precision oncology is feasible across the VHA health care system, including rural sites. Veterans have unique occupational exposures that might inform the nature of the mutational signatures identified here. Importantly, these results underscore the importance of increasing clinical trial availability to veterans.

6.
Stem Cells ; 36(2): 252-264, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29086459

RESUMO

Hematopoietic regeneration following chemotherapy may be distinct from regeneration following radiation. While we have shown that epidermal growth factor (EGF) accelerates regeneration following radiation, its role following chemotherapy is currently unknown. We sought to identify EGF as a hematopoietic growth factor for chemotherapy-induced myelosuppression. Following 5-fluorouracil (5-FU), EGF accelerated hematopoietic stem cell regeneration and prolonged survival compared with saline-treated mice. To mitigate chemotherapy-induced injury to endothelial cells in vivo, we deleted Bax in VEcadherin+ cells (VEcadherinCre;BaxFL/FL mice). Following 5-FU, VEcadherinCre;BaxFL/FL mice displayed preserved hematopoietic stem/progenitor content compared with littermate controls. 5-FU and EGF treatment resulted in increased cellular proliferation, decreased apoptosis, and increased DNA double-strand break repair by non-homologous end-joining recombination compared with saline-treated control mice. When granulocyte colony stimulating factor (G-CSF) is given with EGF, this combination was synergistic for regeneration compared with either G-CSF or EGF alone. EGF increased G-CSF receptor (G-CSFR) expression following 5-FU. Conversely, G-CSF treatment increased both EGF receptor (EGFR) and phosphorylation of EGFR in hematopoietic stem/progenitor cells. In humans, the expression of EGFR is increased in patients with colorectal cancer treated with 5-FU compared with cancer patients not on 5-FU. Similarly, EGFR signaling is responsive to G-CSF in humans in vivo with both increased EGFR and phospho-EGFR in healthy human donors following G-CSF treatment compared with donors who did not receive G-CSF. These data identify EGF as a hematopoietic growth factor following myelosuppressive chemotherapy and that dual therapy with EGF and G-CSF may be an effective method to accelerate hematopoietic regeneration. Stem Cells 2018;36:252-264.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
7.
ACS Chem Biol ; 12(4): 1047-1055, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28103010

RESUMO

Extracellular expression of heat shock protein 90 (eHsp90) by tumor cells is correlated with malignancy. Development of small molecule probes that can detect eHsp90 in vivo may therefore have utility in the early detection of malignancy. We synthesized a cell impermeable far-red fluorophore-tagged Hsp90 inhibitor to target eHsp90 in vivo. High resolution confocal and lattice light sheet microscopy show that probe-bound eHsp90 accumulates in punctate structures on the plasma membrane of breast tumor cells and is actively internalized. The extent of internalization correlates with tumor cell aggressiveness, and this process can be induced in benign cells by overexpressing p110HER2. Whole body cryoslicing, imaging, and histology of flank and spontaneous tumor-bearing mice strongly suggests that eHsp90 expression and internalization is a phenomenon unique to tumor cells in vivo and may provide an "Achilles heel" for the early diagnosis of metastatic disease and targeted drug delivery.


Assuntos
Neoplasias da Mama/patologia , Corantes Fluorescentes/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Endocitose , Espaço Extracelular/metabolismo , Genes erbB-2 , Xenoenxertos , Humanos , Camundongos
8.
PLoS One ; 11(9): e0162078, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27583569

RESUMO

This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of solid cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with current application to proliferative disease and extracorporeal photopheresis (ECP) of cutaneous T Cell Lymphoma. An immunogenic role for light-activated psoralen has been reported, contributing to long-term clinical responses. Psoralen therapies have to-date been limited to superficial or extracorporeal scenarios due to the requirement for psoralen activation by UVA light, which has limited penetration in tissue. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and re-radiate (phosphoresce) at UV wavelengths. The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed to X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry in combination with complimentary assays, and the in-vivo mouse study. In an in-vitro study, we show that X-PACT induces significant tumor cell apoptosis and cytotoxicity, unlike psoralen or phosphor alone (p<0.0001). We also show that apoptosis increases as doses of phosphor, psoralen, or radiation increase. Finally, in an in-vivo pilot study of BALBc mice with syngeneic 4T1 tumors, we show that the rate of tumor growth is slower with X-PACT than with saline or AMT + X-ray (p<0.0001). Overall these studies demonstrate a potential therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. In summary, X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation are delivered to a specific tumor site to generate UVA light which in-turn unleashes both short- and potentially long-term antitumor activity of photo-active therapeutics like psoralen.


Assuntos
Ficusina/farmacologia , Neoplasias/radioterapia , Terapia por Raios X/métodos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Relação Dose-Resposta à Radiação , Ficusina/uso terapêutico , Camundongos
9.
PLoS One ; 10(11): e0142845, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571496

RESUMO

PURPOSE: The paradigm shift in cancer treatment from cytotoxic drugs to tumor targeted therapies poses new challenges, including optimization of dose and schedule based on a biologically effective dose, rather than the historical maximum tolerated dose. Optimal dosing is currently determined using concentrations of tyrosine kinase inhibitors in plasma as a surrogate for tumor concentrations. To examine this plasma-tumor relationship, we explored the association between lapatinib levels in tumor and plasma in mice and humans, and those effects on phosphorylation of human epidermal growth factor receptors (HER) in human tumors. EXPERIMENTAL DESIGN: Mice bearing BT474 HER2+ human breast cancer xenografts were dosed once or twice daily (BID) with lapatinib. Drug concentrations were measured in blood, tumor, liver, and kidney. In a randomized phase I clinical trial, 28 treatment-naïve female patients with early stage HER2+ breast cancer received lapatinib 1000 or 1500 mg once daily (QD) or 500 mg BID before evaluating steady-state lapatinib levels in plasma and tumor. RESULTS: In mice, lapatinib levels were 4-fold higher in tumor than blood with a 4-fold longer half-life. Tumor concentrations exceeded the in vitro IC90 (~ 900 nM or 500 ng/mL) for inhibition of HER2 phosphorylation throughout the 12-hour dosing interval. In patients, tumor levels were 6- and 10-fold higher with QD and BID dosing, respectively, compared to plasma trough levels. The relationship between tumor and plasma concentration was complex, indicating multiple determinants. HER receptor phosphorylation varied depending upon lapatinib tumor concentrations, suggestive of changes in the repertoire of HER homo- and heterodimers. CONCLUSION: Plasma lapatinib concentrations underestimated tumor drug levels, suggesting that optimal dosing should be focused on the site of action to avoid to inappropriate dose escalation. Larger clinical trials are required to determine optimal dose and schedule to achieve tumor concentrations that maximally inhibit HER receptors. CLINICAL TRIAL REGISTRATION: NCT00359190.


Assuntos
Antineoplásicos/sangue , Receptores ErbB/metabolismo , Quinazolinas/sangue , Administração Oral , Adulto , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Área Sob a Curva , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Receptores ErbB/antagonistas & inibidores , Feminino , Meia-Vida , Humanos , Imuno-Histoquímica , Lapatinib , Camundongos , Camundongos SCID , Fosforilação/efeitos dos fármacos , Quinazolinas/farmacocinética , Quinazolinas/uso terapêutico , Curva ROC , Espectrometria de Massas em Tandem , Transplante Heterólogo
10.
J Natl Compr Canc Netw ; 13(8): 1005-11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26285246

RESUMO

CHAMBER was a regional educational initiative for providers of care to patients with HER2+ breast cancer. The study goals were to (1) enhance testing for HER2/neu overexpression in patients with invasive breast cancer; (2) increase the appropriate use of targeted therapy for patients with HER2+ breast cancer; and (3) enhance patients' coping ability. This Performance Improvement Continuing Medical Education (PI-CME) initiative included clinical practice assessment, educational activities, and reassessment. Chart review revealed a high rate of HER2 testing (98%) before and after education. Targeted therapy for patients with HER2+ breast cancer declined after the program (from 96% to 61%), perhaps attributable to an increase in awareness of medical reasons to avoid use of targeted therapy. Assessment for patients' emotional coping ability increased after education (from 55% to 76%; P=.01). Rates of testing for HER2 amplification and assessment of emotional well-being after education were consistent with ASCO Quality Oncology Practice Initiative benchmark values. Documentation of actions to address emotional problems remained an area for improvement.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Educação Médica Continuada , Pessoal de Saúde , Melhoria de Qualidade , Adaptação Psicológica , Neoplasias da Mama/metabolismo , Feminino , Fidelidade a Diretrizes , Pessoal de Saúde/educação , Pessoal de Saúde/normas , Humanos , Adesão à Medicação , Receptor ErbB-2/metabolismo
11.
Chem Biol ; 21(12): 1648-59, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25500222

RESUMO

Inducible Hsp70 (Hsp70i) is overexpressed in a wide spectrum of human tumors, and its expression correlates with metastasis, poor outcomes, and resistance to chemotherapy in patients. Identification of small-molecule inhibitors selective for Hsp70i could provide new therapeutic tools for cancer treatment. In this work, we used fluorescence-linked enzyme chemoproteomic strategy (FLECS) to identify HS-72, an allosteric inhibitor selective for Hsp70i. HS-72 displays the hallmarks of Hsp70 inhibition in cells, promoting substrate protein degradation and growth inhibition. Importantly, HS-72 is selective for Hsp70i over the closely related constitutively active Hsc70. Studies with purified protein show HS-72 acts as an allosteric inhibitor, reducing ATP affinity. In vivo HS-72 is well-tolerated, showing bioavailability and efficacy, inhibiting tumor growth and promoting survival in a HER2+ model of breast cancer. The HS-72 scaffold is amenable to resynthesis and iteration, suggesting an ideal starting point for a new generation of anticancer therapeutics targeting Hsp70i.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Ácidos Nipecóticos/química , Ácidos Nipecóticos/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacocinética , Disponibilidade Biológica , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico HSP70/química , Humanos , Camundongos , Modelos Moleculares , Ácidos Nipecóticos/metabolismo , Ácidos Nipecóticos/farmacocinética , Permeabilidade , Piperidinas/metabolismo , Piperidinas/farmacocinética , Agregados Proteicos/efeitos dos fármacos , Estrutura Terciária de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 9(2): e88983, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551203

RESUMO

Photo-activation of psoralen with UVA irradiation, referred to as PUVA, is used in the treatment of proliferative skin disorders. The anti-proliferative effects of PUVA have been largely attributed to psoralen intercalation of DNA, which upon UV treatment, triggers the formation of interstrand DNA crosslinks (ICL) that inhibit transcription and DNA replication. Here, we show that PUVA exerts antitumor effects in models of human breast cancer that overexpress the ErbB2 receptor tyrosine kinase oncogene, through a new mechanism. Independent of ICL formation, the antitumor effects of PUVA in ErbB2+ breast cancer models can instead be mediated through inhibition of ErbB2 activation and signaling. Using a mass spectroscopy-based approach, we show for the first time that photo-activated 8MOP (8-methoxypsoralen) interacts with the ErbB2 catalytic autokinase domain. Furthermore, PUVA can reverse therapeutic resistance to lapatinib and other ErbB2 targeted therapies, including resistance mediated via expression of a phosphorylated, truncated form of ErbB2 (p85(ErbB2)) that is preferentially expressed in tumor cell nuclei. Current ErbB2 targeted therapies, small molecule kinase inhibitors or antibodies, do not block the phosphorylated, activated state of p85(ErbB2). Here we show that PUVA reduced p85(ErbB2) phosphorylation leading to tumor cell apoptosis. Thus, in addition to its effects on DNA and the formation of ICL, PUVA represents a novel ErbB2 targeted therapy for the treatment of ErbB2+ breast cancers, including those that have developed resistance to other ErbB2 targeted therapies.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Domínio Catalítico , Ficusina/farmacologia , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos da radiação , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Reagentes de Ligações Cruzadas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Ficusina/química , Ficusina/uso terapêutico , Humanos , Lapatinib , Terapia de Alvo Molecular , Terapia PUVA , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos da radiação
13.
Clin Cancer Res ; 20(2): 278-80, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24240115

RESUMO

Trastuzumab emtansine (T-DM1) represents a significant advancement in the treatment of HER2(+) breast cancers. Its clinical efficacy however will be limited by the development of therapeutic resistance. In this report, the HER3 ligand neuregulin is shown to mediate T-DM1 resistance, which was overcome by administration of pertuzumab, a steric inhibitor of HER2 dimerization.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neurregulinas/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Feminino , Humanos , Trastuzumab
14.
Breast Cancer Res ; 15(5): R85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24044505

RESUMO

INTRODUCTION: The human epidermal growth factor receptor 2 (HER2) receptor tyrosine kinase (RTK) oncogene is an attractive therapeutic target for the treatment of HER2-addicted tumors. Although lapatinib, an FDA-approved small-molecule HER2 and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), represents a significant therapeutic advancement in the treatment of HER2+ breast cancers, responses to lapatinib have not been durable. Consequently, elucidation of mechanisms of acquired therapeutic resistance to HER-directed therapies is of critical importance. METHODS: Using a functional protein-pathway activation mapping strategy, along with targeted genomic knockdowns applied to a series of isogenic-matched pairs of lapatinib-sensitive and resistant cell lines, we now report an unexpected mechanism of acquired resistance to lapatinib and similar TKIs. RESULTS: The signaling analysis revealed that whereas HER2 was appropriately inhibited in lapatinib-resistant cells, EGFR tyrosine phosphorylation was incompletely inhibited. Using a targeted molecular knockdown approach to interrogate the causal molecular underpinnings of EGFR-persistent activation, we found that lapatinib-resistant cells were no longer oncogene addicted to HER2-HER3-PI3K signaling, as seen in the parental lapatinib-sensitive cell lines, but instead were dependent on a heregulin (HRG)-driven HER3-EGFR-PI3K-PDK1 signaling axis. Two FDA-approved EGFR TKIs could not overcome HRG-HER3-mediated activation of EGFR, or reverse lapatinib resistance. The ability to overcome EGFR-mediated acquired therapeutic resistance to lapatinib was demonstrated through molecular knockdown of EGFR and treatment with the irreversible pan-HER TKI neratinib, which blocked HRG-dependent phosphorylation of HER3 and EGFR, resulting in apoptosis of resistant cells. In addition, whereas HRG reversed lapatinib-mediated antitumor effects in parental HER2+ breast cancer cells, neratinib was comparatively resistant to the effects of HRG in parental cells. Finally, we showed that HRG expression is an independent negative predictor of clinical outcome in HER2+ breast cancers, providing potential clinical relevance to our findings. CONCLUSIONS: Molecular analysis of acquired therapeutic resistance to lapatinib identified a new resistance mechanism based on incomplete and "leaky" inhibition of EGFR by lapatinib. The selective pressure applied by incomplete inhibition of the EGFR drug target resulted in selection of ligand-driven feedback that sustained EGFR activation in the face of constant exposure to the drug. Inadequate target inhibition driven by a ligand-mediated autocrine feedback loop may represent a broader mechanism of therapeutic resistance to HER TKIs and suggests adopting a different strategy for selecting more effective TKIs to advance into the clinic.


Assuntos
Comunicação Autócrina , Neoplasias da Mama/metabolismo , Receptores ErbB/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transdução de Sinais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Lapatinib , Neuregulina-1/genética , Fosfatidilinositol 3-Quinases , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil , Quinazolinas/farmacologia , Receptor ErbB-3/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Quinases da Família src/antagonistas & inibidores
15.
Chem Biol ; 20(9): 1187-97, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24035283

RESUMO

Inhibitors of heat-shock protein 90 (Hsp90) have demonstrated an unusual selectivity for tumor cells despite its ubiquitous expression. This phenomenon has remained unexplained, but could be influenced by ectopically expressed Hsp90 in tumors. In this work, we synthesized Hsp90 inhibitors that can carry optical or radioiodinated probes via a polyethyleneglycol tether. We show that these tethered inhibitors selectively recognize cells expressing ectopic Hsp90 and become internalized. The internalization process is blocked by Hsp90 antibodies, suggesting that active cycling of the protein occurs at the plasma membrane. In mice, we observed exquisite accumulation of the fluor-tethered versions within breast tumors at very sensitive levels. Cell-based assays with the radiolabeled version showed picomolar detection in cells that express ectopic Hsp90. Our findings show that fluor-tethered or radiolabeled inhibitors that target ectopic Hsp90 can be used to detect breast cancer malignancies through noninvasive imaging.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Halogenação , Humanos , Radioisótopos do Iodo/química , Marcação por Isótopo , Células MCF-7 , Camundongos , Camundongos SCID , Transplante Heterólogo
16.
Sci Signal ; 6(274): ra32, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23652204

RESUMO

In the intrinsic pathway of apoptosis, cell-damaging signals promote the release of cytochrome c from mitochondria, triggering activation of the Apaf-1 and caspase-9 apoptosome. The ubiquitin E3 ligase MDM2 decreases the stability of the proapoptotic factor p53. We show that it also coordinated apoptotic events in a p53-independent manner by ubiquitylating the apoptosome activator CAS and the ubiquitin E3 ligase HUWE1. HUWE1 ubiquitylates the antiapoptotic factor Mcl-1, and we found that HUWE1 also ubiquitylated PP5 (protein phosphatase 5), which indirectly inhibited apoptosome activation. Breast cancers that are positive for the tyrosine receptor kinase HER2 (human epidermal growth factor receptor 2) tend to be highly aggressive. In HER2-positive breast cancer cells treated with the HER2 tyrosine kinase inhibitor lapatinib, MDM2 was degraded and HUWE1 was stabilized. In contrast, in breast cancer cells that acquired resistance to lapatinib, the abundance of MDM2 was not decreased and HUWE1 was degraded, which inhibited apoptosis, regardless of p53 status. MDM2 inhibition overcame lapatinib resistance in cells with either wild-type or mutant p53 and in xenograft models. These findings demonstrate broader, p53-independent roles for MDM2 and HUWE1 in apoptosis and specifically suggest the potential for therapy directed against MDM2 to overcome lapatinib resistance.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Imidazóis/farmacologia , Immunoblotting , Lapatinib , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Quinazolinas/farmacologia , Interferência de RNA , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Breast Cancer Res ; 14(2): R62, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22510516

RESUMO

INTRODUCTION: Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. METHODS: We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). RESULTS: Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF1 amplifications defined a subpopulation of breast cancer with up-regulated HSP90 gene expression, and up-regulated HSP90 expression independently elevated the risk of recurrence of TNBC and poor prognosis of HER2-/ER+ breast cancer. CONCLUSIONS: Up-regulated HSP90 mRNA expression represents a confluence of genomic vulnerability that renders HER2 negative breast cancers more aggressive, resulting in poor prognosis. Targeting breast cancer with up-regulated HSP90 may potentially improve the effectiveness of clinical intervention in this disease.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Receptor ErbB-2/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Proteínas de Ligação a DNA/genética , Feminino , Amplificação de Genes , Fatores de Transcrição de Choque Térmico , Humanos , Estimativa de Kaplan-Meier , Fenótipo , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida , Fatores de Transcrição/genética , Regulação para Cima
18.
Mol Cancer Ther ; 10(8): 1367-74, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21673090

RESUMO

ErbB2 tyrosine kinase inhibitors (TKI) block tyrosine autophosphorylation and activation of the full-length transmembrane ErbB2 receptor (p185(ErbB2)). In addition to p185(ErbB2), truncated forms of ErbB2 exist in breast cancer cell lines and clinical tumors. The contribution of these truncated forms, specifically those expressed in tumor cell nuclei, to the development of therapeutic resistance to ErbB2 TKIs has not been previously shown. Here, we show that expression of a 95-kDa tyrosine phosphorylated form of ErbB2, herein referred to as p95L (lapatinib-induced p95) was increased in ErbB2(+) breast cancer cells treated with potent ErbB2 TKIs (lapatinib, GW2974). Expressed in tumor cell nuclei, tyrosine phosphorylation of p95L was resistant to inhibition by ErbB2 TKIs. Furthermore, the expression of p95L was increased in ErbB2(+) breast cancer models of acquired therapeutic resistance to lapatinib that mimic the clinical setting. Pretreatment with proteasome inhibitors blocked p95L induction in response to ErbB2 TKIs, implicating the role of the proteasome in the regulation of p95L expression. In addition, tyrosine phosphorylated C-terminal fragments of ErbB2, generated by alternate initiation of translation and similar in molecular weight to p95L, were expressed in tumor cell nuclei, where they too were resistant to inhibition by ErbB2 TKIs. When expressed in the nuclei of lapatinib-sensitive ErbB2(+) breast cancer cells, truncated ErbB2 rendered cells resistant to lapatinib-induced apoptosis. Elucidating the function of nuclear, truncated forms of ErbB2, and developing therapeutic strategies to block their expression and/or activation may enhance the clinical efficacy of ErbB2 TKIs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lapatinib , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Quinazolinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Cancer Ther ; 9(2): 292-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20124457

RESUMO

The widespread clinical use of therapies targeting the ErbB2 receptor tyrosine kinase oncogene represents a significant advance in breast cancer treatment. However, the development of therapeutic resistance represents a dilemma limiting their clinical efficacy, particularly small-molecule tyrosine kinase inhibitors that block ErbB2 autophosphorylation and activation. Here, we show that lapatinib (GW572016), a highly selective, small-molecule inhibitor of the ErbB2 and epidermal growth factor receptor tyrosine kinases, which was recently approved for the treatment of advanced-stage ErbB2(+) breast cancer, unexpectedly triggered a cytoprotective stress response in ErbB2(+) breast cancer cell lines, which was mediated by the calcium-dependent activation of RelA, the prosurvival subunit of NF-kappaB. Abrogation of lapatinib-induced RelA activation using either small interfering RNA constructs or an intracellular calcium chelator enhanced the apoptotic effects of lapatinib in parental ErbB2(+) breast cancer cells and overcame therapeutic resistance to lapatinib in ErbB2(+) breast cancer lines that had been rendered resistant to lapatinib through chronic exposure to the drug, mimicking the clinical setting. In addition, analysis of changes in phospho-RelA expression in sequential clinical biopsies from ErbB2(+) breast cancers treated with lapatinib monotherapy revealed marginally statistically significant differences between responders and nonresponders, which was consistent with our preclinical findings. Elucidating the regulation of RelA by lapatinib in ErbB2(+) breast cancers, and showing its role in the development of therapeutic resistance to lapatinib, identifies another therapeutic target to overcome or prevent the onset of resistance to lapatinib in some women with ErbB2(+) breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptor ErbB-2/genética , Fator de Transcrição RelA/metabolismo , Apoptose , Biópsia , Linhagem Celular Tumoral , Ativação Enzimática , Receptores ErbB/metabolismo , Humanos , Imuno-Histoquímica , Lapatinib , NF-kappa B/metabolismo , Quinazolinas/farmacologia
20.
J Clin Oncol ; 27(34): 5838-47, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19884552

RESUMO

PURPOSE: Targeted therapy with the humanized monoclonal antibody trastuzumab has become a mainstay for human epidermal growth factor receptor 2 (HER2) -positive breast cancer (BC). The mechanisms of action of trastuzumab have not been fully elucidated, and data available to date are reviewed here. The impact of the mechanisms of action on clinical benefit also is discussed. METHODS: An extensive literature review of trastuzumab and proposed mechanisms of action was performed. RESULTS: At least five potential extracellular and intracellular antitumor mechanisms of trastuzumab have been identified in the preclinical setting. These include activation of antibody-dependent cellular cytotoxicity, inhibition of extracellular domain cleavage, abrogation of intracellular signaling, reduction of angiogenesis, and decreased DNA repair. These effects lead to tumor cell stasis and/or death. Clinical benefit from trastuzumab-based therapy in both early and advanced BC has been demonstrated. The benefit of trastuzumab use beyond progression has also been shown, which indicates the need for continuous suppression of the HER2 pathway. Targeting both HER2, with various approaches, and other pathways may enhance the clinical benefit observed with trastuzumab and overcome potential resistance. Novel combinations include pertuzumab (a HER2 dimerization inhibitor), lapatinib (a HER1/HER2 tyrosine kinase inhibitor), bevacizumab (an antiangiogenic agent), tanespimycin (a heat shock protein inhibitor), antiestrogen therapies, and an antibody-drug conjugate (trastuzumab-DM1). CONCLUSION: Trastuzumab is the foundation of care for patients with HER2-positive BC. Emerging data from studies of other targeted agents may provide alternative treatment combinations to maximize the clinical benefit from trastuzumab and prevent or delay resistance. The continued development of trastuzumab highlights promising treatment approaches for the future.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Seleção de Pacientes , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA