Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Antioxidants (Basel) ; 12(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37891899

RESUMO

Although AMD is a complex disease, oxidative stress is a crucial contributor to its development, especially in view of the higher oxygen demand of the retina. Paraoxonase 2 (PON2) is a ubiquitously and constitutively expressed antioxidant protein that is found intracellularly associated with mitochondrial membranes and modulates mitochondrial ROS production and function. The contribution of PON2 to AMD has not been studied to date. In this study, we examined the role of PON2 in AMD utilizing both in vitro and in vivo models of AMD with emphasis on mitochondrial function. Mitochondrial localization and regulation of PON2 following oxidative stress were determined in human primary cultured retinal pigment epithelium (hRPE) cells. PON2 was knocked down in RPE cells using siRNA and mitochondrial bioenergetics were measured. To investigate the function of PON2 in the retina, WT and PON2-deficient mice were administered NaIO3 (20 mg/kg) intravenously; fundus imaging, optical coherence tomography (OCT), electroretinography (ERG) were conducted; and retinal thickness and cell death were measured and quantified. In hRPE, mitochondrial localization of PON2 increased markedly with stress. Moreover, a time-dependent regulation of PON2 was observed following oxidative stress, with an initial significant increase in expression followed by a significant decrease. Mitochondrial bioenergetic parameters (basal respiration, ATP production, spare respiratory capacity, and maximal respiration) showed a significant decrease with oxidative stress, which was further exacerbated in the absence of PON2. NaIO3 treatment caused significant retinal degeneration, retinal thinning, and reduced rod and cone function in PON2-deficient mice when compared to WT mice. The apoptotic cells and active caspase 3 significantly increased in PON2-deficient mice treated with NaIO3, when compared to WT mice. Our investigation demonstrates that deficiency of PON2 results in RPE mitochondrial dysfunction and a decline in retinal function. These findings imply that PON2 may have a beneficial role in retinal pathophysiology and is worthy of further investigation.

2.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577701

RESUMO

Background: Retinal pigment epithelial cells (RPE) play vital role in the pathogenesis of age-related macular degeneration (AMD). Our laboratory has shown that RPE cellular senescence contributed to the pathophysiology of experimental AMD, and SASP members are involved in this process. Recently, we presented confirmatory evidence to earlier GWAS studies that dysregulation of tumor necrosis factor receptor superfamily 10A (TNFRSF10A) dysregulation leads to AMD development and is linked to RPE dysfunction. This study aims to investigate the contribution of RPE senescence to AMD pathophysiology using TNFRSF10A silenced human RPE (hRPE) cells and Tnfrsf10 KO mice. Methods: Sub-confluent primary hRPE cells and TNFRSF10A silenced hRPE were exposed to stress-induced premature senescence with H2O2 (500 µM, 48h), and senescence-associated markers (ßgal, p16, and p21) were analyzed by RT-PCR and WB analysis. The effect of H2O2-induced senescence in non-silenced and silenced hRPE on OXPHOS and glycolysis was determined using Seahorse XF96 analyzer. Male C57BL/6J Tnfrsf10 KO ( Tnfrsf10 -/- ) mice were used to study the regulation of senescence by TNFRSF10A in vivo . Expression of p16 and p21 in control and KO mice of varying ages were determined by RT-PCR, WB, and immunostaining analysis. Results: The senescence-associated p16 and p21 showed a significant ( p < 0.01) upregulation with H2O2 induction at the gene (1.8- and 3-fold) and protein (3.2- and 4-fold) levels in hRPE cells. The protein expression of p16 and p21 was further significantly increased by co-treatment with siRNA ( p < 0.05 vs. H2O2). Mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) (pmol/min/total DNA) increased with senescence induction by H2O2 for 48h in control RPE, and knockdown of TNFRSF10A caused a further increase in OCR and ECAR. In addition, co-treatment with PKC activator significantly improved all parameters. Similarly, in vivo studies showed upregulation of p16 and p21 by RT-PCR, WB, and immunostaining analysis in RPE/choroid of Tnfrsf10 KO mice. When subjected to examination across distinct age groups, namely young (1-3 months), middle (6-9 months), and old (12-15 months) mice, a discernible age-related elevation in the expression of p16 and p21 was observed. Conclusions: Our findings suggest that TNRSF10A is a regulator of regulates in RPE senescence. Further work on elucidating pathways of senescence will facilitate the development of new therapeutic targets for AMD.

3.
Antioxidants (Basel) ; 11(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290802

RESUMO

Proliferative Vitreoretinopathy (PVR) is a refractory retinal disease whose primary pathogenesis involves the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. At present, there is no effective treatment other than surgery for PVR. The purpose of this study was to investigate the effect of αB crystallin peptide (αBC-P) on EMT in PVR. We have previously shown that this peptide is antiapoptotic and regulates RPE redox status. Subconfluent primary human RPE (hRPE) cells were stimulated by TGFß2 (10 ng/mL) with or without αBC-P (50 or 75 µg/mL) for 48 h and expression of EMT/mesenchymal to epithelial transition (MET) markers was determined. Mitochondrial ROS (mtROS) generation in hRPE cells treated with TGFß2 was analyzed. The effect of TGFß2 and αBC-P on oxidative phosphorylation (OXPHOS) and glycolysis in hRPE was studied. RPE cell migration was also assessed. A PVR-like phenotype was induced by intravitreal dispase injection in C57BL/6J mice. PVR progression and potential therapeutic efficiency of αBC-Elastin-like polypeptides (ELP) was studied using fundus photography, OCT imaging, ERG, and histologic analysis of the retina. αSMA, E-cadherin, Vimentin, Fibronectin and, RPE65, and CTGF were analyzed on Day 28. Additionally, the amount of VEGF-A in retinal cell lysates was measured. The EMT-associated αSMA, Vimentin, SNAIL and SLUG showed a significant upregulation with TGFß2, and their expression was significantly suppressed by cotreatment with αBC-P. The MET-associated markers, E-cadherin and Sirt1, were significantly downregulated by TGFß2 and were restored by αBC-P. Incubation of hRPE with TGFß2 for 24 h showed a marked increase in mitochondrial ROS which was noticeably inhibited by αBC-ELP. We also showed that after TGFß2 treatment, SMAD4 translocated to mitochondria which was blocked by αBC-ELP. Mitochondrial oxygen consumption rate increased with TGFß2 treatment for 48 h, and αBC-P co-treatment caused a further increase in OCR. Glycolytic functions of RPE were significantly suppressed with αBC-P (75 µg/mL). In addition, αBC-P significantly inhibited the migration from TGFß2 treatment in hRPE cells. The formation of proliferative membranes was suppressed in the αBC-ELP-treated group, as evidenced by fundus, OCT, and H&E staining in dispase-induced PVR in mice. Furthermore, ERG showed an improvement in c-wave amplitude. In addition, immunostaining showed significant suppression of αSMA and RPE65 expression. It was also observed that αBC-ELP significantly reduced the expression level of vimentin, fibronectin, and CTGF. Our findings suggest that the antioxidant αBC-P may have therapeutic potential in preventing PVR by reversing the phenotype of EMT/MET and improving the mitochondrial function in RPE cells.

4.
Cells ; 12(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36611838

RESUMO

Lipid peroxidation from oxidative stress is considered a major contributor to age-related macular degeneration (AMD). The retina is abundant with circulating low-density lipoproteins (LDL), which are taken up by LDL receptor (LDLR) in the RPE and Müller cells. The purpose of this study is to investigate the role of LDLR in the NaIO3-induced model of dry AMD. Confluent primary human RPE (hRPE) and LDLR-silenced ARPE-19 cells were stressed with 150 µM tert-butyl hydroperoxide (tBH) and caspase 3/7 activation was determined. WT and Ldlr-/- mice were administered NaIO3 (20 mg/kg) intravenously. On day 7, fundus imaging, OCT, ERG, and retinal thickness were measured. Histology, TUNEL, cleaved caspase 3 and lipid accumulation were assessed. Treatment of hRPE with tBH markedly decreased LDLR expression. Caspase 3/7 activation was significantly increased in LDLR-silenced ARPE-19 cells treated with tBH. In Ldlr-/- mice, NaIO3 administration resulted in significant (a) retinal thinning, (b) compromised photoreceptor function, (c) increased percentage of cleaved caspase 3 positive and apoptotic cells, and (d) increased lipid droplet accumulation in the RPE, Bruch membrane, choroid, and sclera, compared to WT mice. Our findings imply that LDLR loss leads to lipid accumulation and impaired retinal function, which may contribute to the development of AMD.


Assuntos
Degeneração Macular , Estresse Oxidativo , Camundongos , Humanos , Animais , Caspase 3/metabolismo , Morte Celular , Estresse Oxidativo/fisiologia , Degeneração Macular/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Lipídeos
5.
Front Neurosci ; 15: 780841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082594

RESUMO

Purpose: To investigate how modulating ocular sympathetic activity affects progression of choroidal neovascularization (CNV), a hallmark feature of wet age-related macular degeneration (AMD). Methods: In the first of two studies, Brown Norway rats underwent laser-induced CNV and were assigned to one of the following groups: daily eye drops of artificial tears (n = 10; control group); daily eye drops of the ß-adrenoreceptor agonist isoproterenol (n = 10); daily eye drops of the ß-adrenoreceptor antagonist propranolol (n = 10); sympathetic internal carotid nerve (ICN) transection 6 weeks prior to laser-induced CNV (n = 10). In the second study, rats underwent laser-induced CNV followed by ICN transection at different time points: immediately after the laser injury (n = 6), 7 days after the laser injury (n = 6), and sham surgery 7 days after the laser injury (n = 6; control group). All animals were euthanized 14 days after laser application. CNV development was quantified with fluorescein angiography and optical coherence tomography (in vivo), as well as lesion volume analysis using 3D confocal reconstruction (postmortem). Angiogenic growth factor protein levels in the choroid were measured with ELISA. Results: In the first study, blocking ocular sympathetic activity through pharmacological or surgical manipulation led to a 75% or 70% reduction in CNV lesion volume versus the control group, respectively (P < 0.001). Stimulating ocular sympathetic activity with isoproterenol also led to a reduction in lesion volume, but only by 27% versus controls (P < 0.05). VEGF protein levels in the choroid were elevated in the three treatment groups (P < 0.01). In the second study, fluorescein angiography and CNV lesion volume analysis indicated that surgically removing the ocular sympathetic supply inhibited progression of laser-induced CNV, regardless of whether ICN transection was performed on the same day or 7 days after the laser injury. Conclusion: Surgical and pharmacological block of ocular sympathetic activity can inhibit progression of CNV in a rat model. Therefore, electrical block of ICN activity could be a potential bioelectronic medicine strategy for treating wet AMD.

6.
Antioxidants (Basel) ; 9(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408520

RESUMO

: Mitochondrial glutathione (mGSH) is critical for cell survival. We recently reported the localization of OGC (SLC25A11) and DIC (SLC25A10) in hRPE. Herein, we investigated the suppression of OGC and DIC and the effect of αB crystallin chaperone peptide co-treatment on RPE cell death and mitochondrial function. Non-polarized and polarized human RPE were co-treated for 24 h with phenyl succinic acid (PS, 5 mM) or butyl malonic acid (BM, 5 mM) with or without αB cry peptide (75 µg/mL). mGSH levels, mitochondrial bioenergetics, and ETC proteins were analyzed. The effect of mGSH depletion on cell death and barrier function was determined in polarized RPE co-treated with PS, OGC siRNA or BM and αB cry peptide. Inhibition of OGC and DIC resulted in a significant decrease in mGSH and increased apoptosis. mGSH depletion significantly decreased mitochondrial respiration, ATP production, and altered ETC protein expression. αB cry peptide restored mGSH, attenuated apoptosis, upregulated ETC proteins, and improved mitochondrial bioenergetics and biogenesis. mGSH transporters exhibited differential polarized localization: DIC (apical) and OGC (apical and basal). Inhibition of mGSH transport compromised barrier function which was partially restored by αB cry peptide. Our findings suggest mGSH augmentation by its transporters may be a valuable approach in AMD therapy.

7.
Invest Ophthalmol Vis Sci ; 60(13): 4303-4309, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618767

RESUMO

Purpose: To investigate specific effects of denervation and stimulation of the internal carotid nerve (ICN) on the choroid and retina. Methods: Female Sprague Dawley rats underwent unilateral ICN transection (n = 20) or acute ICN electrical stimulation (n = 7). Rats in the denervation group were euthanized 6 weeks after nerve transection, and eyes were analyzed for changes in choroidal vascularity (via histomorphometry) or angiogenic growth factors and inflammatory markers (via ELISA). Rats in the stimulation group received acute ICN electrical stimulation with a bipolar cuff electrode over a range of stimulus amplitudes, frequencies, and pulse widths. Choroidal blood flow and pupil diameter were monitored before, during, and after stimulation. Results: Six weeks after unilateral ICN transection, sympathectomized choroids exhibited increased vascularity, defined as the percentage of choroidal surface area occupied by blood vessel lumina. Vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein levels in denervated choroids were 61% and 124% higher than in contralateral choroids, respectively. TNF-α levels in denervated retinas increased by 3.3-fold relative to levels in contralateral retinas. In animals undergoing acute ICN electrical stimulation, mydriasis and reduced choroidal blood flow were observed in the ipsilateral eye. The magnitude of the reduction in blood flow correlated positively with stimulus frequency. Conclusions: Modulation of ICN activity reveals a potential role of the ocular sympathetic system in regulating endpoints related to neovascular diseases of the eye.


Assuntos
Artéria Carótida Interna/inervação , Corioide/irrigação sanguínea , Simpatectomia , Sistema Nervoso Simpático/cirurgia , Animais , Biomarcadores/metabolismo , Corioide/metabolismo , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Feminino , Pupila/fisiologia , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Gânglio Cervical Superior/fisiologia , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569695

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD. Oxidative stress plays a key role in the development of AMD. We generated a chimeric high-density lipoprotein (HDL), mimetic peptide named HM-10/10, with anti-oxidant properties and investigated its potential for the treatment of retinal disease using cell culture and animal models of RPE and photoreceptor (PR) degeneration. Treatment with HM-10/10 peptide prevented human fetal RPE cell death caused by tert-Butyl hydroperoxide (tBH)-induced oxidative stress and sodium iodate (NaIO3), which causes RPE atrophy and is a model of geographic atrophy in mice. We also show that HM-10/10 peptide ameliorated photoreceptor cell death and significantly improved retinal function in a mouse model of N-methyl-N-nitrosourea (MNU)-induced PR degeneration. Our results demonstrate that HM-10/10 protects RPE and retina from oxidant injury and can serve as a potential therapeutic agent for the treatment of retinal degeneration.


Assuntos
Lipoproteínas HDL/metabolismo , Peptídeos/farmacologia , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Caspase 7/metabolismo , Modelos Animais de Doenças , Iodatos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/etiologia , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica
9.
Invest Ophthalmol Vis Sci ; 60(2): 500-516, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707752

RESUMO

Purpose: To characterize two mitochondrial membrane transporters 2-oxoglutarate (OGC) and dicarboxylate (DIC) in human RPE (hRPE) and to elucidate their role in the regulation of mitochondrial glutathione (mGSH) uptake and cell death in oxidative stress. Methods: The localization of OGC and DIC proteins in confluent hRPE, polarized hRPE monolayers and mouse retina was assessed by immunoblotting and confocal microscopy. Time- and dose-dependent expression of the two carriers were determined after treatment of hRPE with H2O2, phenyl succinate (PS), and butyl malonate (BM), respectively, for 24 hours. The effect of inhibition of OGC and DIC on apoptosis (TUNEL), mGSH, and mtDNA was determined. Silencing of OGC by siRNA knockdown on RPE cell death was studied. Kinetics of caspase 3/7 activation with OGC and DIC inhibitors and effect of cotreatment with glutathione monoethyl ester (GSH-MEE) was determined using the IncuCyte live cell imaging. Results: OGC and DIC are expressed in hRPE mitochondria and exhibited a time- and dose-dependent decrease with stress. Pharmacologic inhibition caused a decrease in OGC and DIC in mitochondria without changes in mtDNA and resulted in increased apoptosis and mGSH depletion. GSH-MEE prevented apoptosis through restoration of mGSH. OGC siRNA exacerbated apoptotic cell death in stressed RPE which was inhibited by increased mGSH from GSH-MEE cotreatment. Conclusions: Characterization and mechanism of action of two carrier proteins of mGSH uptake in RPE are reported. Regulation of OGC and DIC will be of value in devising therapeutic strategies for retinal disorders such as AMD.


Assuntos
Transportadores de Ácidos Dicarboxílicos/metabolismo , Glutationa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico , Western Blotting , Proteínas de Transporte/metabolismo , Células Cultivadas , DNA Mitocondrial/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/fisiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Marcação In Situ das Extremidades Cortadas , Masculino , Malonatos/farmacologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Succinatos/farmacologia , Fatores de Tempo
10.
Retina ; 39(2): 265-273, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29190236

RESUMO

PURPOSE: We sought to characterize the angiofibrotic and apoptotic effects of vascular endothelial growth factor (VEGF)-inhibition on fibrovascular epiretinal membranes in eyes with traction retinal detachment because of proliferative diabetic retinopathy. METHODS: Membranes were excised from 20 eyes of 19 patients (10 randomized to intravitreal bevacizumab, 10 controls) at vitrectomy. Membranes were stained with antibodies targeting connective tissue growth factor (CTGF) or VEGF and colabeled with antibodies directed against endothelial cells (CD31), myofibroblasts, or retinal pigment epithelium markers. Quantitative and colocalization analyses of antibody labeling were obtained through immunofluorescence confocal microscopy. Masson trichrome staining, cell counting of hematoxylin and eosin sections, and terminal dUTP nick-end labeling staining were performed. RESULTS: High levels of fibrosis were observed in both groups. Cell apoptosis was higher (P = 0.05) in bevacizumab-treated membranes compared with controls. The bevacizumab group had a nonsignificant reduction in colocalization in CD31-CTGF and cytokeratin-VEGF studies compared with controls. Vascular endothelial growth factor in extracted membranes was positively correlated with vitreous levels of VEGF; CTGF in extracted membranes was negatively correlated with vitreous levels of CTGF. CONCLUSION: Bevacizumab suppresses vitreous VEGF levels, but does not significantly alter VEGF or CTGF in diabetic membranes that may be explained by high baseline levels of fibrosis. Bevacizumab may cause apoptosis within fibrovascular membranes.


Assuntos
Apoptose , Bevacizumab/administração & dosagem , Retinopatia Diabética/patologia , Membrana Epirretiniana/cirurgia , Retina/patologia , Vitrectomia/métodos , Actinas/biossíntese , Inibidores da Angiogênese/administração & dosagem , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Retinopatia Diabética/complicações , Retinopatia Diabética/tratamento farmacológico , Membrana Epirretiniana/complicações , Membrana Epirretiniana/patologia , Fibrose/patologia , Humanos , Injeções Intravítreas , Queratinas/biossíntese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Estudos Prospectivos , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese
11.
Ophthalmic Surg Lasers Imaging Retina ; 49(9): e65-e74, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222821

RESUMO

BACKGROUND AND OBJECTIVE: To evaluate a stereological method in optical coherence tomography (OCT) as an in vivo volume measurement of laser-induced choroidal neovascularization (L-CNV) lesion size. PATIENTS AND METHODS: Laser photocoagulation was applied in rats to rupture Bruch's membrane and induce L-CNV. In vivo OCT images of neovascular lesions were acquired with a spectral-domain OCT system at days 0, 3, 7, 10, and 14 after laser surgery. A stereological image-processing method was used to calculate lesion volumes from the OCT images. Rats were euthanized at day 14, and confocal microscopy was used to obtain accurate volume measurements of the lesions ex vivo. Lesion sizes calculated from OCT and confocal were compared. RESULTS: In vivo assessment by OCT allowed three distinct stages of L-CNV to be visualized: the initial early reaction, neovascular proliferation, and regression. At day 14, correlations between OCT and confocal lesion volumes showed a positive association (Pearson's r = 0.50, P < .01). Except for the largest lesions, volumes measured by OCT were statistically similar to those measured by the confocal gold standard (P = .90). CONCLUSION: The stereological approach used to measure neovascular lesion volume from OCT images offers an accurate means to track L-CNV lesion size in vivo. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:e65-e74.].


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/diagnóstico , Terapia com Luz de Baixa Intensidade/efeitos adversos , Tomografia de Coerência Óptica/métodos , Animais , Neovascularização de Coroide/etiologia , Modelos Animais de Doenças , Angiofluoresceinografia/métodos , Fundo de Olho , Degeneração Macular/diagnóstico , Degeneração Macular/cirurgia , Masculino , Ratos , Ratos Endogâmicos BN
12.
J Control Release ; 283: 94-104, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29778783

RESUMO

Age-related macular degeneration (AMD) is the leading cause of severe and irreversible central vision loss, and the primary site of AMD pathology is the retinal pigment epithelium (RPE). Geographic atrophy (GA) is an advanced form of AMD characterized by extensive RPE cell loss, subsequent degeneration of photoreceptors, and thinning of retina. This report describes the protective potential of a peptide derived from the αB crystallin protein using a sodium iodate (NaIO3) induced mouse model of GA. Systemic NaIO3 challenge causes degeneration of the RPE and neighboring photoreceptors, which have similarities to retinas of GA patients. αB crystallin is an abundant ocular protein that maintains ocular clarity and retinal homeostasis, and a small peptide from this protein (mini cry) displays neuroprotective properties. To retain this peptide for longer in the vitreous, mini cry was fused to an elastin-like polypeptide (ELP). A single intra-vitreal treatment by this crySI fusion significantly inhibits retinal degeneration in comparison to free mini cry. While mini cry is cleared from the eye with a mean residence time of 0.4 days, crySI is retained with a mean residence time of 3.0 days; furthermore, fundus photography reveals evidence of retention at two weeks. Unlike the free mini cry, crySI protects the RPE against NaIO3 challenge for at least two weeks after administration. CrySI also inhibits RPE apoptosis and caspase-3 activation and protects the retina from cell death up to 1-month post NaIO3 challenge. These results show that intra-ocular ELP-linked peptides such as crySI hold promise as protective agents to prevent RPE atrophy and progressive retinal degeneration in AMD.


Assuntos
Elastina/administração & dosagem , Degeneração Macular/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Peptídeos/administração & dosagem , Cadeia B de alfa-Cristalina/administração & dosagem , Animais , Modelos Animais de Doenças , Elastina/farmacocinética , Olho/efeitos dos fármacos , Olho/metabolismo , Olho/patologia , Injeções Intravítreas , Iodatos , Degeneração Macular/induzido quimicamente , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Neuroproteção , Fármacos Neuroprotetores/farmacocinética , Peptídeos/farmacocinética , Cadeia B de alfa-Cristalina/farmacocinética
13.
Mol Vis ; 22: 213-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27011730

RESUMO

PURPOSE: Rare mutations in the human RGR gene lead to autosomal recessive retinitis pigmentosa or dominantly inherited peripapillary choroidal atrophy. Here, we analyze a common exon-skipping isoform of the human retinal G protein-coupled receptor opsin (RGR-d) to determine differences in subcellular targeting between RGR-d and normal RGR and possible association with abnormal traits in the human eye. METHODS: The terminal complement complex (C5b-9), vitronectin, CD46, syntaxin-4, and RGR-d were analyzed in human eye tissue from young and old donors or in cultured fetal RPE cells by means of immunofluorescent labeling and high-resolution confocal microscopy or immunohistochemical staining. RESULTS: We observed that RGR-d is targeted to the basolateral plasma membrane of the RPE. RGR-d, but not normal RGR, is expressed in cultured human fetal RPE cells in which the protein also trafficks to the plasma membrane. In young donors, the amount of RGR-d protein in the basolateral plasma membrane was much higher than that in the RPE cells of older subjects. In older donor eyes, the level of immunoreactive RGR-d within RPE cells was often low or undetectable, and immunostaining of RGR-d was consistently strongest in extracellular deposits in Bruch's membrane. Double immunofluorescent labeling in the basal deposits revealed significant aggregate and small punctate co-localization of RGR-d with C5b-9 and vitronectin. CONCLUSIONS: RGR-d may escape endoplasmic reticulum-associated degradation and in contrast to full-length RGR, traffick to the basolateral plasma membrane, particularly in younger subjects. RGR-d in the plasma membrane indicates that the protein is properly folded, as misfolded membrane proteins cannot otherwise sort to the plasma membrane. The close association of extracellular RGR-d with both vitronectin and C5b-9 suggests a potential role of RGR-d-containing deposits in complement activation.


Assuntos
Processamento Alternativo/fisiologia , Membrana Celular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Olho/metabolismo , Opsinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Idoso , Western Blotting , Lâmina Basilar da Corioide/metabolismo , Células Cultivadas , Éxons/genética , Proteínas do Olho/genética , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Vetores Genéticos , Humanos , Masculino , Proteína Cofatora de Membrana/metabolismo , Microscopia Confocal , Pessoa de Meia-Idade , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Doadores de Tecidos , Transfecção , Vitronectina/metabolismo
14.
Am J Pathol ; 186(4): 859-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878210

RESUMO

Subretinal fibrosis is an end stage of neovascular age-related macular degeneration, characterized by fibrous membrane formation after choroidal neovascularization. An initial step of the pathogenesis is an epithelial-mesenchymal transition (EMT) of retinal pigment epithelium cells. αB-crystallin plays multiple roles in age-related macular degeneration, including cytoprotection and angiogenesis. However, the role of αB-crystallin in subretinal EMT and fibrosis is unknown. Herein, we showed attenuation of subretinal fibrosis after regression of laser-induced choroidal neovascularization and a decrease in mesenchymal retinal pigment epithelium cells in αB-crystallin knockout mice compared with wild-type mice. αB-crystallin was prominently expressed in subretinal fibrotic lesions in mice. In vitro, overexpression of αB-crystallin induced EMT, whereas suppression of αB-crystallin induced a mesenchymal-epithelial transition. Transforming growth factor-ß2-induced EMT was further enhanced by overexpression of αB-crystallin but was inhibited by suppression of αB-crystallin. Silencing of αB-crystallin inhibited multiple fibrotic processes, including cell proliferation, migration, and fibronectin production. Bone morphogenetic protein 4 up-regulated αB-crystallin, and its EMT induction was inhibited by knockdown of αB-crystallin. Furthermore, inhibition of αB-crystallin enhanced monotetraubiquitination of SMAD4, which can impair its nuclear localization. Overexpression of αB-crystallin enhanced nuclear translocation and accumulation of SMAD4 and SMAD5. Thus, αB-crystallin is an important regulator of EMT, acting as a molecular chaperone for SMAD4 and as its potential therapeutic target for preventing subretinal fibrosis development in neovascular age-related macular degeneration.


Assuntos
Neovascularização de Coroide/metabolismo , Transição Epitelial-Mesenquimal/genética , Fibrose/metabolismo , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Neovascularização de Coroide/genética , Fibronectinas/metabolismo , Humanos , Degeneração Macular/genética , Masculino , Camundongos Knockout , Epitélio Pigmentado da Retina/patologia , Cadeia B de alfa-Cristalina/genética
15.
Sci Rep ; 5: 16386, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26552368

RESUMO

Proliferative vitreoretinopathy (PVR) is a serious complication of retinal detachment and ocular trauma, and its recurrence may lead to irreversible vision loss. Epithelial to mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of PVR, which is characterized by fibrotic membrane formation and traction retinal detachment. In this study, we investigated the potential impact of resveratrol (RESV) on EMT and the fibrotic process in cultured RPE cells and further examined the preventive effect of RESV on PVR development using a rabbit model of PVR. We found that RESV induces mesenchymal to epithelial transition (MET) and inhibits transforming growth factor-ß2(TGF-ß2)-induced EMT of RPE cells by deacetylating SMAD4. The effect of RESV on MET was dependent on sirtuin1 activation. RESV suppressed proliferation, migration and fibronectin synthesis induced by platelet-derived growth factor-BB or TGF-ß2. In vivo, RESV inhibited the progression of experimental PVR in rabbit eyes. Histological findings showed that RESV reduced fibrotic membrane formation and decreased α-SMA expression in the epiretinal membranes. These results suggest the potential use of RESV as a therapeutic agent to prevent the development of PVR by targeting EMT of RPE.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Estilbenos/farmacologia , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia , Acetilação , Animais , Biomarcadores , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibronectinas/biossíntese , Coelhos , Resveratrol , Epitélio Pigmentado da Retina/metabolismo , Sirtuína 1/metabolismo , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Vitreorretinopatia Proliferativa/tratamento farmacológico
16.
Cytokine ; 76(2): 549-552, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26174951

RESUMO

SIRT1, a NAD(+) -dependent histone deacetylase, has been shown to act as a key regulator of angiogenesis. The purpose of this study was to determine the effects of resveratrol (RSV, a SIRT1 activator) on the vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathway and to establish its relevance to choroidal neovascularization (CNV), a blinding complication of age-related macular degeneration. Western blot and ELISA assay showed that RSV inhibited hypoxia-inducible factor (HIF)-1α accumulation and VEGF secretion induced by cobalt chloride (CoCl2) through SIRT1 in human retinal pigment epithelial (hRPE) cells. Furthermore, RSV down-regulated VEGFR2 phosphorylation and activation induced by VEGF in endothelial cells via SIRT1. Thus, the inhibitory effect of RSV on the HIF-1α/VEGF/VEGFR2 signaling axis is mediated, at least in part, through SIRT1. The results suggest that targeting SIRT1 could have therapeutic potential for the treatment of CNV.


Assuntos
Neovascularização de Coroide/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/fisiologia , Estilbenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Fosforilação , Resveratrol
17.
PLoS One ; 10(3): e0120587, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807249

RESUMO

Choroidal neovascularization (CNV) is a blinding complication of age-related macular degeneration that manifests as the growth of immature choroidal blood vessels through Bruch's membrane, where they can leak fluid or hemorrhage under the retina. Here, we demonstrate that the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) can down-regulate the pro-angiogenic hypoxia-inducible factor-1α and vascular endothelial growth factor (VEGF), and up-regulate the anti-angiogenic and neuro-protective pigment epithelium derived factor in human retinal pigment epithelial (RPE) cells. Most strikingly, TSA markedly down-regulates the expression of VEGF receptor-2 in human vascular endothelial cells and, thus, can knock down pro-angiogenic cell signaling. Additionally, TSA suppresses CNV-associated wound healing response and RPE epithelial-mesenchymal transdifferentiation. In the laser-induced model of CNV using C57Bl/6 mice, systemic administration of TSA significantly reduces fluorescein leakage and the size of CNV lesions at post-laser days 7 and 14 as well as the immunohistochemical expression of VEGF, VEGFR2, and smooth muscle actin in CNV lesions at post-laser day 7. This report suggests that TSA, and possibly HDACi's in general, should be further evaluated for their therapeutic potential for the treatment of CNV.


Assuntos
Neovascularização de Coroide/etiologia , Inibidores de Histona Desacetilases/toxicidade , Ácidos Hidroxâmicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/veterinária , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Proteínas do Olho/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Hidroxâmicos/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Serpinas/metabolismo , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos
18.
PLoS One ; 9(5): e98275, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24874187

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD and αB crystallin expression is increased in RPE and associated drusen in AMD. The purpose of this study was to investigate the role of αB crystallin in sodium iodate (NaIO3)-induced retinal degeneration, a model of AMD in which the primary site of pathology is the RPE. Dose dependent effects of intravenous NaIO3 (20-70 mg/kg) on development of retinal degeneration (fundus photography) and RPE and retinal neuronal loss (histology) were determined in wild type and αB crystallin knockout mice. Absence of αB crystallin augmented retinal degeneration in low dose (20 mg/kg) NaIO3-treated mice and increased retinal cell apoptosis which was mainly localized to the RPE layer. Generation of reactive oxygen species (ROS) was observed with NaIO3 in mouse and human RPE which increased further after αB crystallin knockout or siRNA knockdown, respectively. NaIO3 upregulated AKT phosphorylation and peroxisome proliferator-activator receptor-γ (PPARγ) which was suppressed after αB crystallin siRNA knockdown. Further, PPARγ ligand inhibited NaIO3-induced ROS generation. Our data suggest that αB crystallin plays a critical role in protection of NaIO3-induced oxidative stress and retinal degeneration in part through upregulation of AKT phosphorylation and PPARγ expression.


Assuntos
Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Cadeia B de alfa-Cristalina/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Modelos Animais de Doenças , Eletrorretinografia , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Iodatos/efeitos adversos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/induzido quimicamente , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Retinoscópios , Transdução de Sinais , Cadeia B de alfa-Cristalina/metabolismo
19.
Cytokine ; 68(2): 137-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24758915

RESUMO

Connective tissue growth factor (CTGF) is known to be involved in retinal fibrotic disorders. We used human retinal pigment epithelial cells (HRPE), which play critical roles in retinal fibrosis, to examine the expression of CTGF and its regulation by ceramide and TGF-ß. Real-time PCR analysis showed downregulation of CTGF mRNA by C2 ceramide and upregulation by TGF-ß. C2 ceramide also inhibited constitutive and TGF-ß-enhanced CTGF secretion by HRPE cells. Predominant secretion (>80% of total) of CTGF from the apical side was observed in highly polarized HRPE cells. Fumonosin, an inhibitor of ceramide synthesis, stimulated CTGF secretion while 4HPR, an activator of ceramide synthesis, downregulated CTGF secretion. Based on these results demonstrating ceramide regulation of CTGF secretion by HRPE, we suggest that ceramide may have therapeutic potential for the treatment of retinal fibrotic diseases by inhibiting CTGF production.


Assuntos
Ceramidas/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Epiteliais/metabolismo , Epitélio Pigmentado da Retina/citologia , Polaridade Celular/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/genética , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fenretinida/farmacologia , Fumonisinas/farmacologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/farmacologia
20.
Invest Ophthalmol Vis Sci ; 54(4): 2787-98, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23532520

RESUMO

PURPOSE: The chaperone proteins, α-crystallins, also possess antiapoptotic properties. The purpose of the present study was to investigate whether 19 to 20-mer α-crystallin-derived mini-chaperone peptides (α-crystallin mini-chaperone) are antiapoptotic, and to identify their putative transporters in human fetal RPE (hfRPE) cells. METHODS: Cell death and caspase-3 activation induced by oxidative stress were quantified in early passage hfRPE cells in the presence of 19 to 20-mer αA- or αB-crystallin-derived or scrambled peptides. Cellular uptake of fluorescein-labeled, α-crystallin-derived mini-peptides and recombinant full-length αB-crystallin was determined in confluent hfRPE. The entry mechanism in hfRPE cells for α-crystallin mini-peptides was investigated. The protective role of polycaprolactone (PCL) nanoparticle encapsulated αB-crystallin mini-chaperone peptides from H2O2-induced cell death was studied. RESULTS: Primary hfRPE cells exposed to oxidative stress and either αA- or αB-crystallin mini-chaperones remained viable and showed marked inhibition of both cell death and activation of caspase-3. Uptake of full-length αB-crystallin was minimal while a time-dependent uptake of αB-crystallin-derived peptide was observed. The mini-peptides entered the hfRPE cells via the sodium-coupled oligopeptide transporters 1 and 2 (SOPT1, SOPT2). PCL nanoparticles containing αB-crystallin mini-chaperone were also taken up and protected hfRPE from H2O2-induced cell death at significantly lower concentrations than free αB-crystallin mini-chaperone peptide. CONCLUSIONS: αA- and αB-crystallin mini-chaperones offer protection to hfRPE cells and inhibit caspase-3 activation. The oligopeptide transporters SOPT1 and SOPT2 mediate the uptake of these peptides in RPE cells. Nanodelivery of αB-crystallin-derived mini-chaperone peptide offers an alternative approach for protection of hfRPE cells from oxidant injury.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/fisiologia , Peptídeos/fisiologia , Epitélio Pigmentado da Retina/citologia , Cadeia A de alfa-Cristalina/fisiologia , Cadeia B de alfa-Cristalina/fisiologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/fisiologia , Caspase 3/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes , Epitélio Pigmentado da Retina/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA