Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(4): e0191299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698491

RESUMO

OBJECTIVE: We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). METHODS: We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). RESULTS: We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate) and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. CONCLUSION: These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dopamina/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Anfetamina/farmacologia , Animais , Encéfalo/patologia , Insulina/metabolismo , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Rede Nervosa/efeitos dos fármacos , Obesidade/patologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
2.
PLoS One ; 6(9): e25169, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21969871

RESUMO

BACKGROUND: The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt) involved in insulin signaling induced by exposure to a high-fat (HF) diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA) rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT). Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. METHODOLOGY/PRINCIPAL FINDINGS: We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH)-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH)-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. CONCLUSIONS/SIGNIFICANCE: Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to "the fast food lifestyle" creates a cycle of disordered eating that cements pathological changes in DA signaling leading to weight gain and obesity.


Assuntos
Dopamina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Transporte Biológico , Biotinilação , Encéfalo/metabolismo , Membrana Celular/metabolismo , Corpo Estriado/metabolismo , Dieta Hiperlipídica , Homeostase , Insulina/metabolismo , Locomoção , Masculino , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Substância Negra/metabolismo
3.
Nat Neurosci ; 14(4): 469-77, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21399631

RESUMO

Plasmalemmal neurotransmitter transporters (NTTs) regulate the level of neurotransmitters, such as dopamine (DA) and glutamate, after their release at brain synapses. Stimuli including protein kinase C (PKC) activation can lead to the internalization of some NTTs and a reduction in neurotransmitter clearance capacity. We found that the protein Flotillin-1 (Flot1), also known as Reggie-2, was required for PKC-regulated internalization of members of two different NTT families, the DA transporter (DAT) and the glial glutamate transporter EAAT2, and we identified a conserved serine residue in Flot1 that is essential for transporter internalization. Further analysis revealed that Flot1 was also required to localize DAT within plasma membrane microdomains in stable cell lines, and was essential for amphetamine-induced reverse transport of DA in neurons but not for DA uptake. In sum, our findings provide evidence for a critical role of Flot1-enriched membrane microdomains in PKC-triggered DAT endocytosis and the actions of amphetamine.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Endocitose/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteína Quinase C/fisiologia , Animais , Endocitose/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/fisiologia , Células HEK293 , Células HeLa , Humanos , Camundongos , Neuroglia/metabolismo
4.
ACS Chem Neurosci ; 1(7): 476-81, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22778840

RESUMO

Dopamine (DA) is a neurotransmitter implicated in multiple functions, including movement, cognition, motivation, and reward. The DA transporter (DAT) is responsible for clearing extracellular DA, thereby terminating DA neurotransmission. Previously, it has been shown that insulin signaling through protein kinase B/Akt regulates DAT function by fine-tuning DAT cell surface expression. Importantly, specific Akt isoforms (e.g., Akt1, Akt2) serve distinct physiological functions. Here, we demonstrate using isoform-specific Akt inhibitors that basal activity of Akt2, rather than Akt1, regulates DAT cell surface expression. Since Akt2 activation is mediated by insulin, these data further implicate insulin signaling as an important modulator of DAT function and dopaminergic tone.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Regulação Alostérica , Animais , Membrana Celular/enzimologia , Corpo Estriado/citologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/enzimologia , Células HEK293/efeitos dos fármacos , Células HEK293/enzimologia , Células HEK293/metabolismo , Humanos , Insulina/fisiologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Especificidade por Substrato , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA