Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Plant Physiol ; 177(3): 927-937, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752309

RESUMO

Photoautotrophic organisms must efficiently allocate their resources between stress-response pathways and growth-promoting pathways to be successful in a constantly changing environment. In this study, we addressed the coordination of sulfur flux between the biosynthesis of the reactive oxygen species scavenger glutathione (GSH) and protein translation as one example of a central resource allocation switch. We crossed the Arabidopsis (Arabidopsis thaliana) GSH synthesis-depleted cadmium-sensitive cad2-1 mutant, which lacks glutamate cysteine (Cys) ligase, into the sulfite reductase sir1-1 mutant, which suffers from a significantly decreased flux of sulfur into Cys and, consequently, is retarded in growth. Surprisingly, depletion of GSH synthesis promoted the growth of the sir1-1 cad2-1 double mutant (s1c2) when compared with sir1-1 Determination of GSH levels and in vivo live-cell imaging of the reduction-oxidation-sensitive green fluorescent protein sensor demonstrated significant oxidation of the plastidic GSH redox potential in cad2-1 and s1c2 This oxidized GSH redox potential aligned with significant activation of plastid-localized sulfate reduction and a significantly higher flux of sulfur into proteins. The specific activation of the serine/threonine sensor kinase Target of Rapamycin (TOR) in cad2-1 and s1c2 was the trigger for reallocation of Cys from GSH biosynthesis into protein translation. Activation of TOR in s1c2 enhanced ribosome abundance and partially rescued the decreased meristematic activity observed in sir1-1 mutants. Therefore, we found that the coordination of sulfur flux between GSH biosynthesis and protein translation determines growth via the regulation of TOR.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Glutationa/metabolismo , Enxofre/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Mutação , Oxirredução , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Sulfatos/metabolismo
3.
Nat Commun ; 8(1): 1174, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079776

RESUMO

Growth of eukaryotic cells is regulated by the target of rapamycin (TOR). The strongest activator of TOR in metazoa is amino acid availability. The established transducers of amino acid sensing to TOR in metazoa are absent in plants. Hence, a fundamental question is how amino acid sensing is achieved in photo-autotrophic organisms. Here we demonstrate that the plant Arabidopsis does not sense the sulfur-containing amino acid cysteine itself, but its biosynthetic precursors. We identify the kinase GCN2 as a sensor of the carbon/nitrogen precursor availability, whereas limitation of the sulfur precursor is transduced to TOR by downregulation of glucose metabolism. The downregulated TOR activity caused decreased translation, lowered meristematic activity, and elevated autophagy. Our results uncover a plant-specific adaptation of TOR function. In concert with GCN2, TOR allows photo-autotrophic eukaryotes to coordinate the fluxes of carbon, nitrogen, and sulfur for efficient cysteine biosynthesis under varying external nutrient supply.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Enxofre/química , Arabidopsis/genética , Autofagia , Genótipo , Meristema/metabolismo , Fenótipo , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Transdução de Sinais , Sulfetos
4.
Plant J ; 77(4): 604-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330104

RESUMO

Sulfur-containing compounds play a critical role in the response of plants to abiotic stress factors including drought. The phytohormone abscisic acid (ABA) is the key regulator of responses to drought and high-salt stress. However, our knowledge about interaction of S-metabolism and ABA biosynthesis is scarce. Here we report that sulfate supply affects synthesis and steady-state levels of ABA in Arabidopsis wild-type seedlings. By using different mutants of the sulfate uptake and reduction pathway, we confirmed the impact of sulfate supply on steady-state ABA content in Arabidopsis and demonstrated that this impact was due to cysteine availability. Loss of the chloroplast sulfate transporter3;1 function (sultr3;1) resulted in significantly decreased aldehyde oxidase (AO) activity and ABA levels in seedlings and seeds. These mutant phenotypes could be reverted by exogenous application of cysteine or ectopic expression of SULTR3;1. In addition the sultr3;1 mutant showed a decrease of xanthine dehydrogenase activity, but not of nitrate reductase, strongly indicating that in seedlings cysteine availability limits activity of the molybdenum co-factor sulfurase, ABA3, which requires cysteine as the S-donor for sulfuration. Transcription of ABA3 and NCED3, encoding another key enzyme of the ABA biosynthesis pathway, was regulated by S-supply in wild-type seedlings. In contrast, ABA up-regulated the transcript level of SULTR3;1 and other S-metabolism-related genes. Our results provide evidence for a significant co-regulation of S-metabolism and ABA biosynthesis that operates to ensure sufficient cysteine for AO maturation and highlights the importance of sulfur for stress tolerance of plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Sulfatos/metabolismo , Ácido Abscísico/análise , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cistina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Técnicas de Inativação de Genes , Genes Reporter , Germinação , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sais , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Transportadores de Sulfato , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
5.
Front Plant Sci ; 5: 776, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25653656

RESUMO

Situations of excess light intensity are known to result in the emergence of reactive oxygen species that originate from the electron transport chain in chloroplasts. The redox state of glutathione and its biosynthesis contribute importantly to the plant's response to this stress. In this study we analyzed the significance of cysteine synthesis for long-term acclimation to high light conditions in Arabidopsis thaliana. Emphasis was put on the rate-limiting step of cysteine synthesis, the formation of the precursor O-acetylserine (OAS) that is catalyzed by serine acetyltransferase (SERAT). Wild type Arabidopsis plants responded to the high light condition (800 µmol m(-2) s(-1) for 10 days) with synthesis of photo-protective anthocyanins, induction of total SERAT activity and elevated glutathione levels when compared to the control condition (100 µmol m(-2) s(-1)). The role of cysteine synthesis in chloroplasts was probed in mutant plants lacking the chloroplast isoform SERAT2;1 (serat2;1) and two knock-out alleles of CYP20-3, a positive interactor of SERAT in the chloroplast. Acclimation to high light resulted in a smaller growth enhancement than wild type in the serat2;1 and cyp20-3 mutants, less induction of total SERAT activity and OAS levels but similar cysteine and glutathione concentrations. Expression analysis revealed no increase in mRNA of the chloroplast SERAT2;1 encoding SERAT2;1 gene but up to 4.4-fold elevated SERAT2;2 mRNA levels for the mitochondrial SERAT isoform. Thus, lack of chloroplast SERAT2;1 activity or its activation by CYP20-3 prevents the full growth response to high light conditions, but the enhanced demand for glutathione is likely mediated by synthesis of OAS in the mitochondria. In conclusion, cysteine synthesis in the chloroplast is important for performance but is dispensable for survival under long-term exposure to high light and can be partially complemented by cysteine synthesis in mitochondria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA