RESUMO
Properties of high-entropy alloys are currently in the spotlight due to their promising applications. One of the least investigated aspects is the affinity of these alloys to hydrogen, its diffusion, and reactions. In this study, high pressure is applied at ambient temperature and stress-induced diffusion of hydrogen is investigated into the structure of high-entropy alloys (HEA) including the famous Cantor alloy as well as less known, but nevertheless important platinum group (PGM) alloys. By applying X-ray diffraction to samples loaded into diamond anvil cells, a comparative investigation of transition element incorporating HEA alloys in Ne and H2 pressure-transmitting media is performed at ambient temperature. Even under stresses far exceeding conventional industrial processes, both Cantor and PGM alloys show exceptional resistance to hydride formation, on par with widely used industrial grade Cu-Be alloys. The observations inspire optimism for practical HEA applications in hydrogen-relevant industry and technology (e.g., coatings, etc), particularly those related to transport and storage.
RESUMO
Hydrogenation reactions at gigapascal pressures can yield hydrogen-rich materials with properties relating to superconductivity, ion conductivity, and hydrogen storage. Here, we investigated the ternary Na-Si-H system by computational structure prediction and in situ synchrotron diffraction studies of reaction mixtures NaH-Si-H2 at 5-10 GPa. Structure prediction indicated the existence of various hypervalent hydridosilicate phases with compositions NamSiH(4+m) (m = 1-3) at comparatively low pressures, 0-20 GPa. These ternary Na-Si-H phases share, as a common structural feature, octahedral SiH6 2- complexes which are condensed into chains for m = 1 and occur as isolated species for m = 2, 3. In situ studies demonstrated the formation of the double salt Na3[SiH6]H (Na3SiH7, m = 3) containing both octahedral SiH6 2- moieties and hydridic H-. Upon formation at elevated temperatures (>500°C), Na3SiH7 attains a tetragonal structure (P4/mbm, Z = 2) which, during cooling, transforms to an orthorhombic polymorph (Pbam, Z = 4). Upon decompression, Pbam-Na3SiH7 was retained to approx. 4.5 GPa, below which a further transition into a yet unknown polymorph occurred. Na3SiH7 is a new representative of yet elusive hydridosilicate compounds. Its double salt nature and polymorphism are strongly reminiscent of fluorosilicates and germanates.
RESUMO
K2SiH6, crystallizing in the cubic K2PtCl6 structure type (Fm3Ì m), features unusual hypervalent SiH62- complexes. Here, the formation of K2SiH6 at high pressures is revisited by in situ synchrotron diffraction experiments, considering KSiH3 as a precursor. At the investigated pressures, 8 and 13 GPa, K2SiH6 adopts the trigonal (NH4)2SiF6 structure type (P3Ì m1) upon formation. The trigonal polymorph is stable up to 725 °C at 13 GPa. At room temperature, the transition into an ambient pressure recoverable cubic form occurs below 6.7 GPa. Theory suggests the existence of an additional, hexagonal, variant in the pressure interval 3-5 GPa. According to density functional theory band structure calculations, K2SiH6 is a semiconductor with a band gap around 2 eV. Nonbonding H-dominated states are situated below and Si-H anti-bonding states are located above the Fermi level. Enthalpically feasible and dynamically stable metallic variants of K2SiH6 may be obtained when substituting Si partially by Al or P, thus inducing p- and n-type metallicity, respectively. Yet, electron-phonon coupling appears weak, and calculated superconducting transition temperatures are <1 K.
RESUMO
Ge and Sn are unreactive at ambient conditions. Their significant promise for optoelectronic applications is thus largely confined to thin film investigations. We sought to remove barriers to reactivity here by accessing a unique pressure, 10 GPa, where the two elements can adopt the same crystal structure (tetragonal, I41/amd) and exhibit compatible atomic radii. The route to GeSn solid solution, however, even under these directed conditions, is different. Reaction upon heating at 10 GPa occurs between unlike crystal structures (Ge, Fd3m and Sn, I4/mmm), which also have highly incompatible atomic radii. They should not react, but they do. A reconstructive transformation of I4/mmm into the I41/amd solid solution then follows. The new tetragonal GeSn solid solution (I41/amd a = 5.280(1) Å, c = 2.915(1) Å, Z = 4 at 9.9 GPa and 298 K) also constitutes the structural and electronic bridge between 4-fold and newly prepared 8-fold coordinated alloy cubic symmetries. Furthermore, using this high-pressure route, bulk cubic diamond-structured GeSn alloys can now be obtained at ambient pressure. The findings here remove confining conventional criteria on routes to synthesis. This opens innovative avenues to advanced materials development.
RESUMO
The cubic diamond (Fd 3 â¾ m) group IVA element Si has been the material driver of the electronics industry since its inception. We report synthesis of a new cubic (Im 3 â¾ m) group IVA material, a GeSn solid solution, upon heating Ge and Sn at pressures from 13 to 28â GPa using double-sided diamond anvil laser-heating and large volume press methods. Both methods were coupled with in situ angle dispersive X-ray diffraction characterization. The new material substantially enriches the seminal group IVA alloy materials landscape by introducing an eightfold coordinated cubic symmetry, which markedly expands on the conventional tetrahedrally coordinated cubic one. This cubic solid solution is formed, despite Ge never adopting the Im 3 â¾ m symmetry, melting inhibiting subsequent Im 3 â¾ m formation and reactant Ge and Sn having unlike crystal structures and atomic radii at all these pressures. This is hence achieved without adherence to conventional formation criteria and routes to synthesis. This advance creates fertile avenues for new materials development.
RESUMO
The formation of ternary hydrogen-rich hydrides involving the first-row transition metals TM = Fe and Co in high oxidation states is demonstrated from in situ synchrotron diffraction studies of reaction mixtures NaH-TM-H2 at p ≈ 10 GPa. Na3FeH7 and Na3CoH6 feature pentagonal bipyramidal FeH73- and octahedral CoH63- 18-electron complexes, respectively. At high pressure, high temperature (300 < T ≤ 470 °C) conditions, metal atoms are arranged as in the face-centered cubic Heusler structure, and ab initio molecular dynamics simulations suggest that the complexes undergo reorientational dynamics. Upon cooling, subtle changes in the diffraction patterns evidence reversible and rapid phase transitions associated with ordering of the complexes. During decompression, Na3FeH7 and Na3CoH6 transform to tetragonal and orthorhombic low pressure forms, respectively, which can be retained at ambient pressure. The discovery of Na3FeH7 and Na3CoH6 establishes a consecutive series of homoleptic hydrogen-rich complexes for first-row transition metals from Cr to Ni.
RESUMO
The Na-Ni-H system was investigated by in situ synchrotron diffraction studies of reaction mixtures NaH-Ni-H2 at around 5, 10, and 12 GPa. The existence of ternary hydrogen-rich hydrides with compositions Na3NiH5 and NaNiH3, where Ni attains the oxidation state II, is demonstrated. Upon heating at â¼5 GPa, face-centered cubic (fcc) Na3NiH5 forms above 430 °C. Upon cooling, it undergoes a rapid and reversible phase transition at 330 °C to an orthorhombic (Cmcm) form. Upon pressure release, Na3NiH5 further transforms into its recoverable Pnma form whose structure was elucidated from synchrotron powder diffraction data, aided by first-principles density functional theory (DFT) calculations. Na3NiH5 features previously unknown square pyramidal 18-electron complexes NiH5 3-. In the high temperature fcc form, metal atoms are arranged as in the Heusler structure, and ab initio molecular dynamics simulations suggest that the complexes are dynamically disordered. The Heusler-type metal partial structure is essentially maintained in the low temperature Cmcm form, in which NiH5 3- complexes are ordered. It is considerably rearranged in the low pressure Pnma form. Experiments at 10 GPa showed an initial formation of fcc Na3NiH5 followed by the addition of the perovskite hydride NaNiH3, in which Ni(II) attains an octahedral environment by H atoms. NaNiH3 is recoverable at ambient pressures and represents the sole product of 12 GPa experiments. DFT calculations show that the decomposition of Na3NiH5 = NaNiH3 + 2 NaH is enthalpically favored at all pressures, suggesting that Na3NiH5 is metastable and its formation is kinetically favored. Ni-H bonding in metallic NaNiH3 is considered covalent, as in electron precise Na3NiH5, but delocalized in the polyanion [NiH3]-.
RESUMO
The complex transition metal hydride Mg3CrH8 has been previously synthesized using high pressure conditions. It contains the first group 6 homoleptic hydrido complex, [Cr(II)H7]5-. Here, we investigated the formation of Mg3CrH8 by in situ studies of reaction mixtures of 3MgH2-Cr-H2 at 5 GPa. The formation of the known orthorhombic form (o-Mg3CrH8) was noticed at temperatures above 635 °C, albeit at a relatively slow rate. At temperatures around 750 °C a high temperature phase formed rapidly, which upon slow cooling converted into o-Mg3CrH8. The phase transition at high pressures occurred reversibly at â¼735 °C upon heating and at â¼675 °C upon slow cooling. Upon rapid cooling, a monoclinic polymorph (m-Mg3CrH8) was afforded which could be subsequently recovered and analyzed at ambient pressure. m-Mg3CrH8 was found to crystallize in P21/n space group (a = 5.128 Å, b = 16.482 Å, c = 4.805 Å, ß = 90.27°). Its structure elucidation from high resolution synchrotron powder diffraction data was aided by first-principles DFT calculations. Like the orthorhombic polymorph, m-Mg3CrH8 contains pentagonal bipyramidal complexes [CrH7]5- and interstitial H-. The arrangement of metal atoms and interstitial H- resembles closely that of the high pressure orthorhombic form of Mg3MnH7. This suggests similar principles of formation and stabilization of hydrido complexes at high pressure and temperature conditions in the Mg-Cr-H and Mg-Mn-H systems. Calculated enthalpy versus pressure relations predict o-Mg3CrH8 being more stable than m-Mg3CrH8 by 6.5 kJ/mol at ambient pressure and by 13 kJ/mol at 5 GPa. The electronic structure of m-Mg3CrH8 is very similar to that of o-Mg3CrH8. The stable 18-electron complex [CrH7]5- is mirrored in the occupied states, and calculated band gaps are around 1.5 eV.
RESUMO
Hexagonal Si allotropes are expected to enhance light absorption in the visible range as compared to common cubic Si with diamond structure. Therefore, synthesis of these materials is crucial for the development of Si-based optoelectronics. In this work, we combine in situ high-pressure high-temperature synthesis and vacuum heating to obtain hexagonal Si. High pressure is one of the most promising routes to stabilize these allotropes. It allows one to obtain large-volume nanostructured ingots by a sequence of direct solid-solid transformations, ensuring high-purity samples for detailed characterization. Thanks to our synthesis approach, we provide the first evidence of a polycrystalline bulk sample of hexagonal Si. Exhaustive structural analysis, combining fine-powder X-ray and electron diffraction, afforded resolution of the crystal structure. We demonstrate that hexagonal Si obtained by high-pressure synthesis correspond to Si-4H polytype (ABCB stacking) in contrast with Si-2H (AB stacking) proposed previously. This result agrees with prior calculations that predicted a higher stability of the 4H form over 2H form. Further physical characterization, combining experimental data and ab initio calculations, have shown a good agreement with the established structure. Strong photoluminescence emission was observed in the visible region for which we foresee optimistic perspectives for the use of this material in Si-based photovoltaics.
RESUMO
The Mg-Mn-H system was investigated by in situ high pressure studies of reaction mixtures MgH2-Mn-H2. The formation conditions of two complex hydrides with composition Mg3MnH7 were established. Previously known hexagonal Mg3MnH7 (h-Mg3MnH7) formed at pressures 1.5-2 GPa and temperatures between 480 and 500 °C, whereas an orthorhombic form (o-Mg3MnH7) was obtained at pressures above 5 GPa and temperatures above 600 °C. The crystal structures of the polymorphs feature octahedral [Mn(I)H6]5- complexes and interstitial H-. Interstitial H- is located in trigonal bipyramidal and square pyramidal interstices formed by Mg2+ ions in h- and o-Mg3MnH7, respectively. The hexagonal form can be retained at ambient pressure, whereas the orthorhombic form upon decompression undergoes a distortion to monoclinic Mg3MnH7 (m-Mg3MnH7). The structure elucidation of o- and m-Mg3MnH7 was aided by first-principles density functional theory (DFT) calculations. Calculated enthalpy versus pressure relations predict m- and o-Mg3MnH7 to be more stable than h-Mg3MnH7 above 4.3 GPa. Phonon calculations revealed o-Mg3MnH7 to be dynamically unstable at pressures below 5 GPa, which explains its phase transition to m-Mg3MnH7 on decompression. The electronic structure of the quenchable polymorphs h- and m-Mg3MnH7 is very similar. The stable 18-electron complex [MnH6]5- is mirrored in the occupied states, and calculated band gaps are around 1.5 eV. The study underlines the significance of in situ investigations for mapping reaction conditions and understanding phase relations for hydrogen-rich complex transition metal hydrides.
RESUMO
High-pressure hydrothermal environments can drastically reduce the kinetic constraints of phase transitions and afford high-pressure modifications of oxides at comparatively low temperatures. Under certain circumstances such environments allow access to kinetically favored phases, including hydrous ones with water incorporated as hydroxyl. We studied the crystallization of glass in the presence of a large excess of water in the pressure range of 0.25-10 GPa and at temperatures from 200 to 600 °C. The p and T quenched samples were analyzed by powder X-ray diffraction, scanning electron microscopy, and IR spectroscopy. At pressures of 0.25-2 GPa metastable zeolite Li-ABW and stable α-eucryptite are obtained at low and high temperatures, respectively, with crystal structures based on tetrahedrally coordinated Al and Si atoms. At 5 GPa a new, hydrous phase of LiAlSiO4, LiAlSiO3(OH)2 = LiAlSiO4·H2O, is produced. Its crystal structure was characterized from single-crystal X-ray diffraction data (space group P21/c, a = 9.547(3) Å, b = 14.461(5) Å, c = 5.062(2) Å, ß = 104.36(1)°). The monoclinic structure resembles that of α-spodumene (LiAlSi2O6) and constitutes alternating layers of chains of corner-condensed SiO4 tetrahedra and chains of edge-sharing AlO6 octahedra. OH groups are part of the octahedral Al coordination and extend into channels provided within the SiO4 tetrahedron chain layers. At 10 GPa another hydrous phase of LiAlSiO4 with presently unknown structure is produced. The formation of hydrous forms of LiAlSiO4 shows the potential of hydrothermal environments at gigapascal pressures for creating truly new materials. In this particular case it indicates the possibility of generally accessing pyroxene-type aluminosilicates with crystallographic amounts of hydroxyl incorporated. This could also have implications to geosciences by representing a mechanism of water storage and transport in the depths of the Earth.
RESUMO
Stishovite (SiO(2) with the rutile structure and octahedrally coordinated silicon) is an important high-pressure mineral. It has previously been considered to be essentially anhydrous. In this study, hydrothermal treatment of silica glass and coesite at 350-550 °C near 10 GPa produces stishovite with significant amounts of H(2)O in its structure. A combination of methodologies (X-ray diffraction, thermal analysis, oxide melt solution calorimetry, secondary ion mass spectrometry, infrared and nuclear magnetic resonance spectroscopy) indicate the presence of 1.3 ± 0.2 wt % H(2)O and NMR suggests that the primary mechanism for the H(2)O uptake is a direct hydrogarnet-like substitution of 4H(+) for Si(4+), with the protons clustered as hydroxyls around a silicon vacancy. This substitution is accompanied by a substantial volume decrease for the system (SiO(2) + H(2)O), although the stishovite expands slightly, and it is only slightly unfavorable in energy. Stishovite could thus be a host for H(2)O at convergent plate boundaries, and in other relatively cool high-pressure environments.