Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(3): 878-887, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481682

RESUMO

Transfusion of stored red blood cells (RBCs) to patients is a critical component of human healthcare. Following purification from whole blood, RBCs are stored in one of many media known as additive solutions for up to 42 days. However, during the storage period, the RBCs undergo adverse chemical and physical changes that are often collectively known as the RBC storage lesion. Storage of RBCs in additive solutions modified to contain physiological levels of glucose, as opposed to hyperglycemic levels currently used in most cases, reduces certain markers of the storage lesion, although intermittent doses of glucose are required to maintain normoglycemic conditions. Here, we describe an electrically actuated valving system to dispense small volumes of glucose into 100 mL PVC storage bags containing packed RBCs from human donors. The RBCs were stored in a conventional additive solution (AS-1) or a normoglycemic version of AS-1 (AS-1N) and common markers of stored RBC health were measured at multiple time points throughout storage. The automated feeding device delivered precise and predictable volumes of concentrated glucose to maintain physiological glucose levels for up to 37 days. Hemolysis, lactate accumulation, and pH values of RBCs stored in AS-1N were statistically equivalent to values measured in AS-1, while significant reductions in osmotic fragility and intracellular sorbitol levels were measured in AS-1N. The reduction of osmotic fragility and oxidative stress markers in a closed system may lead to improved transfusion outcomes for an important procedure affecting millions of people each year.

2.
Small ; 20(5): e2305300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735143

RESUMO

Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has shown extensive lung manifestations in vulnerable individuals, putting lung imaging and monitoring at the forefront of early detection and treatment. Magnetic particle imaging (MPI) is an imaging modality, which can bring excellent contrast, sensitivity, and signal-to-noise ratios to lung imaging for the development of new theranostic approaches for respiratory diseases. Advances in MPI tracers would offer additional improvements and increase the potential for clinical translation of MPI. Here, a high-performance nanotracer based on shape anisotropy of magnetic nanoparticles is developed and its use in MPI imaging of the lung is demonstrated. Shape anisotropy proves to be a critical parameter for increasing signal intensity and resolution and exceeding those properties of conventional spherical nanoparticles. The 0D nanoparticles exhibit a 2-fold increase, while the 1D nanorods have a > 5-fold increase in signal intensity when compared to VivoTrax. Newly designed 1D nanorods displayed high signal intensities and excellent resolution in lung images. A spatiotemporal lung imaging study in mice revealed that this tracer offers new opportunities for monitoring disease and guiding intervention.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Anisotropia , Diagnóstico por Imagem/métodos , Magnetismo , Fenômenos Magnéticos , Imageamento por Ressonância Magnética
3.
Anal Methods ; 15(48): 6698-6705, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38047493

RESUMO

During blood storage, red blood cells (RBCs) undergo physical, chemical, and metabolic changes that may contribute to post-transfusion complications. Due to the hyperglycemic environment of typical solutions used for RBC storage, the formation of advanced glycation endproducts (AGEs) on the stored RBCs has been implicated as a detrimental chemical change during storage. Unfortunately, there are limited studies involving quantitative determination and differentiation of carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL), two commonly formed AGEs, and no reported studies comparing these AGEs in experimental storage solutions. In this study, CML and CEL were identified and quantified on freshly drawn blood samples in two types of storage solutions, standard additive solution 1 (AS-1) and a normoglycemic version of AS-1 (AS-1N). To facilitate detection of the AGEs, a novel method was developed to reliably extract AGEs from RBCs, provide Food and Drug Administration (FDA) bioanalytical guidance criteria, and enable acceptable selectivity for these analytes. Ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) was utilized to identify and quantify the AGEs. Results show this method is accurate, precise, has minimal interferences or matrix effects, and overcomes the issue of detecting AGE byproducts. Importantly, AGEs can be detected and quantified in both types of blood storage solutions (AS-1 and AS-1N), thereby enabling long-term (6 weeks) blood storage related studies.


Assuntos
Lisina , Estados Unidos , Lisina/análise , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/química , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
4.
Anal Bioanal Chem ; 415(25): 6135-6144, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37612458

RESUMO

Pathogens develop resistance to various drugs while under the selective pressure of antibiotics resulting in the emergence of bacterial strains that are resistant to multiple treatment options. Unfortunately, the resistance to antibiotics has also been accompanied by a reduction in the development of novel antibiotics to combat various pathogens. Current diagnostic tools, which are used in parts of the early developmental process of antibiotics, primarily consist of static susceptibility tests that do not resemble the pharmacokinetics of the therapy in vivo. Here, we designed and 3D-printed cubical inserts with membranes on two of the cube faces that allow diffusion of a molecule across two planes. These inserts are used with a 3D-printed device to create a two-compartment model to mimic the pharmacokinetics of a molecule in humans from multiple types of administration. Fluorescein was used to characterize the device and the diffusion of molecules from a flowing channel, through a membrane in the first plane (representing the primary compartment in vivo, or plasma), followed by measurement in the second compartment (that represents the interstitial fluid). The dynamic, two-compartment model was tested using both gram-positive and gram-negative bacterial strains in the secondary compartment. The ATP/OD600 (a measure of antibiotic activity) of a kanamycin-resistant E. coli strain challenged with the antibiotic levofloxacin increased after reaching an effective concentration of the antibiotic at 2 h, equating to a secondary compartment concentration of 3.5 ± 1.3 µM levofloxacin. The ATP/OD600 of a chloramphenicol-resistant B. subtilis strain challenged with the antibiotic levofloxacin remained steady or increased slightly after reaching an effective concentration of the antibiotic. The earliest statistical difference was detected 3 h after the start of the PK curve, which corresponds with a secondary compartment concentration of 4.8 ± 1.8 µM levofloxacin. Our results demonstrate that a fabricated 2-compartment model (1) provides realistic PK values to those published from in vivo studies and (2) can be used to determine antibiotic pharmacodynamics.


Assuntos
Antibacterianos , Levofloxacino , Humanos , Levofloxacino/farmacologia , Escherichia coli , Trifosfato de Adenosina , Impressão Tridimensional , Testes de Sensibilidade Microbiana
5.
Anal Methods ; 14(33): 3171-3179, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35959771

RESUMO

In this paper, a 3D-printed multi-modal device was designed and fabricated to simultaneously detect nitric oxide (NO) and adenosine triphosphate (ATP) in red blood cell suspensions prepared from whole blood. Once a sample was injected into the device, NO was first detected (via amperometry) using a three-electrode, dual-opposed, electrode configuration with a platinum-black/Nafion coated gold working electrode. After in-line amperometric detection of NO, ATP was detected via a chemiluminescence reaction, with a luciferin/luciferase solution continuously pumped into an integrated mixing T and the resulting light being measured with a PMT underneath the channel. The device was optimized for mixing/reaction conditions, limits of detection (40 nM for NO and 30 nM for ATP), and sensitivity. This device was used to determine the basal (normoxic) levels of NO and ATP in red blood cells, as well as an increase in concentration of both analytes under hypoxic conditions. Finally, the effect of storing red blood cells in a commonly used storage solution was also investigated by monitoring the production of NO and ATP over a three-week storage time.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Trifosfato de Adenosina/farmacologia , Eritrócitos , Técnicas Analíticas Microfluídicas/métodos , Óxido Nítrico/farmacologia , Impressão Tridimensional
6.
ACS Meas Sci Au ; 2(3): 278-286, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35726250

RESUMO

Serum albumin is a prominent plasma protein that becomes modified in hyperglycemic conditions. In a process known as glycation, these modifications can change the structure and function of proteins, which decrease ligand binding capabilities and alter the bioavailability of ligands. C-peptide is a molecule that binds to the red blood cell (RBC) and stimulates the release of adenosine triphosphate (ATP), which is known to participate in the regulation of blood flow. C-peptide binding to the RBC only occurs in the presence of albumin, and downstream signaling cascades only occur when the albumin and C-peptide complex contains Zn2+. Here, we measure the binding of glycated bovine serum albumin (gBSA) to the RBC in conditions with or without C-peptide and Zn2+. Key to these studies is the analytical sample preparation involving separation of BSA fractions with boronate affinity chromatography and characterization of the varying glycation levels with mass spectrometry. Results from this study show an increase in binding for higher % glycation of gBSA to the RBCs, but a decrease in ability to deliver C-peptide (0.75 ± 0.11 nM for 22% gBSA) compared to samples with less glycation (1.22 ± 0.16 nM for 13% gBSA). A similar trend was measured for Zn2+ delivery to the RBC as a function of glycation percentage. When 15% gBSA or 18% gBSA was combined with C-peptide/Zn2+, the derived ATP release from the RBCs significantly increased to 113% or 36%, respectively. However, 26% gBSA with C-peptide/Zn2+ had no significant increase in ATP release from RBCs. These results indicate that glycation of BSA interferes in C-peptide and Zn2+ binding to the RBC and subsequent RBC ATP release, which may have implications in C-peptide therapy for people with type 1 diabetes.

7.
Lab Chip ; 22(7): 1310-1320, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35258064

RESUMO

A set of 3D-printed analytical devices were developed to investigate erythrocytes (ERYs) processed in conventional and modified storage solutions used in transfusion medicine. During storage, prior to transfusion into a patient recipient, ERYs undergo many chemical and physical changes that are not completely understood. However, these changes are thought to contribute to an increase in post-transfusion complications, and even an increase in mortality rates. Here, a reusable fluidic device (fabricated with additive manufacturing technologies) enabled the evaluation of ERYs prior to, and after, introduction into a stream of flowing fresh ERYs, thus representing components of an in vivo ERY transfusion on an in vitro platform. Specifically, ERYs stored in conventional and glucose-modified solutions were assayed by chemiluminescence for their ability to release flow-induced ATP. The ERY's deformability was also determined throughout the storage duration using a novel membrane transport approach housed in a 3D-printed scaffold. Results show that hyperglycemic conditions permanently alter ERY deformability, which may explain the reduced ATP release, as this phenomenon is related to cell deformability. Importantly, the reduced deformability and ATP release were reversible in an in vitro model of transfusion; specifically, when stored cells were introduced into a flowing stream of healthy cells, the ERY-derived release of ATP and cell deformability both returned to states similar to that of non-stored cells. However, after 1-2 weeks of storage, the deleterious effects of the storage were permanent. These results suggest that currently approved hyperglycemic storage solutions are having adverse effects on stored ERYs used in transfusion medicine and that normoglycemic storage may reduce the storage lesion, especially for cells stored for longer than 14 days.


Assuntos
Transfusão de Sangue , Eritrócitos , Trifosfato de Adenosina/farmacologia , Preservação de Sangue/efeitos adversos , Preservação de Sangue/métodos , Deformação Eritrocítica , Humanos , Impressão Tridimensional
8.
Mol Pharm ; 18(6): 2438-2447, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939443

RESUMO

Since its discovery in 1994, leptin continues to have new potential physiological roles uncovered, including a role in the regulation of blood flow. Leptin's role in regulating blood flow is not completely understood. Red blood cell (RBC)-derived ATP is a recognized stimulus of blood flow, and multiple studies suggest that C-peptide, a hormone secreted in equimolar amounts with insulin from the pancreatic ß-cells, can stimulate that release when delivered by albumin and in combination with Zn2+. Here, we report leptin delivers C-peptide and Zn2+ to RBCs in a saturable and specific manner. We labeled leptin with technetium-99 m (99mTc) to perform binding studies while using albumin to block the specific binding of 99mTc-leptin in the presence or absence of C-peptide. Our results suggest that leptin has a saturable and specific binding site on the RBC ((Kd = 1.79 ± 0.46) × 10-7 M) that is statistically equal to the binding affinity in the presence of 20 nM C-peptide ((Kd = 2.05 ± 0.20) × 10-7 M). While the binding affinity between leptin and the RBC did not change with C-peptide, the moles of bound leptin did increase with C-peptide, suggesting a separate binding site on the cell for a leptin/C-peptide complex. The RBC-derived ATP increased in the presence of a leptin/C-peptide/Zn2+ addition, in a concentration-dependent manner. Control RBCs ATP release increased (71 ± 5.6%) in the presence of C-peptide and Zn2+, which increased further to (94 ± 5.6%) in the presence of Zn2+, C-peptide, and leptin.


Assuntos
Trifosfato de Adenosina/metabolismo , Peptídeo C/administração & dosagem , Portadores de Fármacos/farmacologia , Eritrócitos/metabolismo , Leptina/farmacologia , Circulação Sanguínea/efeitos dos fármacos , Portadores de Fármacos/química , Eritrócitos/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Leptina/química , Óxido Nítrico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Tecnécio , Zinco/química
9.
Metallomics ; 12(7): 1036-1043, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32626857

RESUMO

Plasma proteins are covalently modified in vivo by the high-glucose conditions in the bloodstreams of people with diabetes, resulting in changes to both structure and function. Human Serum Albumin (HSA) functions as a carrier-protein in the bloodstream, binding various ligands and tightly regulating their bioavailability. HSA is known to react with glucose via the Maillard reaction, causing adverse effects on its ability to bind and deliver certain ligands, such as metals. Here, the binding between in vivo glycated HSA and zinc (Zn2+) was determined using a novel centrifugal ultrafiltration method that was developed using a 3D-printed device. This method is rapid (90 minutes), capable of high-throughput measurements (24 samples), low-cost (<$1.00 USD per device) and requires lower sample volumes (200 µL) compared to other binding techniques. This device was used to determine an equilibrium dissociation constant between Zn2+ and a commercially obtained normal HSA (nHSA) with a glycation level of 11.5% (Kd = 2.1 (±0.5) × 10-7 M). A glycated fraction of the nHSA sample was enriched (gHSA, 65.5%) and isolated using boronate-affinity chromatography, and found to have a 2.3-fold decrease in Zn2+ binding-affinity (Kd = 4.8 (±0.8) × 10-7 M) when compared to the nHSA sample. The level of glycation of HSA in control plasma (13.0% ± 0.8, n = 3 donors) and plasma from people with diabetes (26.9% ± 6.6, n = 5 donors) was assessed using mass spectrometry. Furthermore, HSA was isolated from plasma obtained in-house from a person with type 1 diabetes and found to have a glycation level of 24.1% and Kd = 3.3 (± 0.5) × 10-7 M for Zn2+, revealing a 1.5-fold decrease in binding affinity compared to nHSA. These findings suggest that increased levels of glycated HSA result in reduced binding to Zn2+, which may have implications in complications associated with diabetes.


Assuntos
Impressão Tridimensional/instrumentação , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Cromatografia de Afinidade/métodos , Glicosilação , Humanos , Espectrometria de Massas , Ligação Proteica , Ultrafiltração/métodos , Zinco/metabolismo
10.
Chembiochem ; 21(22): 3192-3196, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32608180

RESUMO

Domain-swapping is a mechanism for evolving new protein structure from extant scaffolds, and has been an efficient protein-engineering strategy for tailoring functional diversity. However, domain swapping can only be exploited if it can be controlled, especially in cases where various folds can coexist. Herein, we describe the structure of a domain-swapped trimer of the iLBP family member hCRBPII, and suggest a mechanism for domain-swapped trimerization. It is further shown that domain-swapped trimerization can be favored by strategic installation of a disulfide bond, thus demonstrating a strategy for fold control. We further show the domain-swapped trimer to be a useful protein design template by installing a high-affinity metal binding site through the introduction of a single mutation, taking advantage of its threefold symmetry. Together, these studies show how nature can promote oligomerization, stabilize a specific oligomer, and generate new function with minimal changes to the protein sequence.


Assuntos
Engenharia de Proteínas , Proteínas Celulares de Ligação ao Retinol/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
11.
J Am Chem Soc ; 141(43): 17125-17132, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31557439

RESUMO

Protein conformational switches or allosteric proteins play a key role in the regulation of many essential biological pathways. Nonetheless, the implementation of protein conformational switches in protein design applications has proven challenging, with only a few known examples that are not derivatives of naturally occurring allosteric systems. We have discovered that the domain-swapped (DS) dimer of hCRBPII undergoes a large and robust conformational change upon retinal binding, making it a potentially powerful template for the design of protein conformational switches. Atomic resolution structures of the apo- and holo-forms illuminate a simple, mechanical movement involving sterically driven torsion angle flipping of two residues that drive the motion. We further demonstrate that the conformational "readout" can be altered by addition of cross-domain disulfide bonds, also visualized at atomic resolution. Finally, as a proof of principle, we have created an allosteric metal binding site in the DS dimer, where ligand binding results in a reversible 5-fold loss of metal binding affinity. The high resolution structure of the metal-bound variant illustrates a well-formed metal binding site at the interface of the two domains of the DS dimer and confirms the design strategy for allosteric regulation.


Assuntos
Engenharia de Proteínas/métodos , Proteínas Celulares de Ligação ao Retinol/química , Proteínas Celulares de Ligação ao Retinol/metabolismo , Regulação Alostérica , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Dissulfetos/química , Ligantes , Metais/metabolismo , Modelos Moleculares , Mutação , Domínios Proteicos , Multimerização Proteica , Proteínas Celulares de Ligação ao Retinol/genética , Treonina/genética , Tirosina/genética , Zinco/metabolismo
12.
Anal Chem ; 91(10): 6910-6917, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31035747

RESUMO

Microfluidic devices have historically been prepared using fabrication techniques that often include photolithography and/or etching. Recently, additive manufacturing technologies, commonly known as 3D-printing, have emerged as fabrication tools for microfluidic devices. Unfortunately, PolyJet 3D-printing, which utilizes a photocurable resin that can be accurately printed, requires the use of support material for any designed void space internal to the model. Removing the support material from the printed channels is difficult in small channels with single dimensions of less than ∼200 µm and nearly impossible to remove from designs that contain turns or serpentines. Here, we describe techniques for printing channels ranging in cross sections from 0.6 cm × 1.5 cm to 125 µm × 54 µm utilizing commercially available PolyJet printers that require minimal to no postprocessing to form sealed channels. Specifically, printer software manipulation allows printing of one model with an open channel or void that is sealed with either a viscous liquid or a polycarbonate membrane (no commercially available support material). The printer stage is then adjusted and a second model is printed directly on top of the first model with the selected support system. Both the liquid-fill and the membrane method have enough structural integrity to support the printing resin while it is being cured. Importantly, such complex channel geometries as serpentine and Y-mixers can be designed, printed, and in use in under 2 h. We demonstrate device utility by measuring ATP release from flowing red blood cells using a luciferin/luciferase chemiluminescent assay that involves on-chip mixing and optical detection.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Impressão Tridimensional , 2-Propanol/química , Trifosfato de Adenosina/sangue , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Eritrócitos/efeitos dos fármacos , Glicerol/química , Humanos , Técnicas Analíticas Microfluídicas/métodos , Software
13.
PLoS One ; 14(1): e0210534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629681

RESUMO

Antibiotic susceptibility testing is often performed to determine the most effective antibiotic treatment for a bacterial infection, or perhaps to determine if a particular strain of bacteria is becoming drug resistant. Such tests, and others used to determine efficacy of candidate antibiotics during the drug discovery process, have resulted in a demand for more rapid susceptibility testing methods. Here, we have developed a susceptibility test that utilizes chemiluminescent determination of ATP release from bacteria and the overall optical density (OD600) of the bacterial solution. Bacteria release ATP during a growth phase or when they are lysed in the presence of an effective antibiotic. Because optical density increases during growth phase, but does not change during bacterial lysing, an increase in the ATP:optical density ratio after the bacteria have reached the log phase of growth (which is steady) would indicate antibiotic efficacy. Specifically, after allowing a kanamycin-resistant strain of Escherichia coli (E.coli) to pass through the growth phase and reach steady state, the addition of levofloxacin, an antibiotic to which E. coli is susceptible, resulted in a significant increase in the ATP:OD600 ratio in comparison to the use of kanamycin alone (1.80 +/- 0.50 vs. 1.12 +/- 0.28). This difference could be measured 20 minutes after the addition of the antibiotic, to which the bacteria are susceptible, to the bacterial sample. Furthermore, this method also proved useful with gram positive bacteria, as the addition of kanamycin to a chloramphenicol-resistant strain of Bacillus subtilis (B. subtilis) resulted in an ATP:OD600 ratio of 2.14 +/- 0.26 in comparison to 0.62 +/- 0.05 for bacteria not subjected to the antibiotic to which the bacteria are susceptible. Collectively, these results suggest that measurement of the ATP:OD600 ratio may provide a susceptibility test for antibiotic efficacy that is more rapid and quantitative than currently accepted techniques.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/métodos , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Canamicina/farmacologia
14.
Anal Methods ; 11(33): 4220-4232, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32051693

RESUMO

A review with 105 references that analyzes the emerging research area of 3D cell culture in microfluidic platforms with integrated detection schemes. Over the last several decades a central focus of cell culture has been the development of better in vivo mimics. This has led to the evolution from planar cell culture to cell culture on 3D scaffolds, and the incorporation of cell scaffolds into microfluidic devices. Specifically, this review explores the incorporation of suspension culture, hydrogels scaffolds, paper-based scaffolds, and fiber-based scaffolds into microfluidic platforms. In order to decrease analysis time, simplify sample preparation, monitor key signaling pathways involved in cell-to-cell communication or cell growth, and combat the limitations of sample volume/ dilution seen in traditional assays, researchers have also started to focus on integrating detection schemes into the cell culture devices. This review will highlight the work that has been performed towards combining these techniques and will discuss potential future directions. It is clear that microfluidic-based 3D cell culture coupled with quantitative analysis can greatly improve our ability to mimic and understand in vivo systems.

15.
Anal Bioanal Chem ; 410(29): 7565-7573, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30255321

RESUMO

Protein-ligand binding assays facilitate the understanding of biomolecular interactions. Classical equilibrium dialysis methods are often used for accurate determination of binding properties. While accurate, the long equilibration times associated with the technique (> 6 h) hinder throughput. Here, in an attempt to gather high-accuracy results while reducing total analysis time, a low pressure ultrafiltration method that relies on a simple membrane-containing syringe attachment was developed. A minimal portion (1-2%) of the solution containing the binding analytes of interest is driven through the membrane pores and collected for analysis. Specifically, the device was used to investigate the binding affinity between Zn2+ and either normal human serum albumin (nHSA) or a commercially purchased glycated human serum albumin (gHSA). Both of these ligand/protein-binding systems have implications in type 1 diabetes. The device was then used to investigate the binding between the various albumin types and C-peptide, the 31 amino acid peptide that is co-secreted with insulin from pancreatic ß cells. Results for nHSA/Zn2+ binding obtained using the ultrafiltration method (Kd = 5.77 ± 0.19 × 10-7 M) were statistically equivalent with results reported using other methods. Importantly, the amount of Zn2+ bound to the nHSA was significantly different from the gHSA (97 ± 2% protein bound vs. 91 ± 3%, respectively p < 0.05). The binding affinity of C-peptide to nHSA (Kd = 2.4 ± 0.3 × 10-6 M) agreed with values reported in the literature using standard techniques. Unlike Zn2+ binding, the binding of C-peptide to nHSA was statistically equal to its binding to gHSA (77.7 ± 6.2 and 78.8 ± 7.4%, respectively), suggesting that C-peptide replacement therapy in people with T1D may be strongly dependent upon the characteristics of Zn2+ binding to human serum albumin. Graphical abstract ᅟ.


Assuntos
Impressão Tridimensional/instrumentação , Albumina Sérica Humana/química , Albumina Sérica/química , Ultrafiltração/métodos , Diabetes Mellitus Tipo 1 , Produtos Finais de Glicação Avançada , Humanos , Impressão Tridimensional/tendências , Ligação Proteica , Padrões de Referência , Seringas , Fatores de Tempo , Ultrafiltração/instrumentação , Zinco/química , Albumina Sérica Glicada
16.
Anal Chem ; 89(14): 7302-7306, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28648046

RESUMO

Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn2+ and human serum albumin (Kd = (5.62 ± 0.93) × 10-7 M) under physiological conditions that is statistically equal to the constants reported in the literature.


Assuntos
Diálise , Impressão , Albumina Sérica Humana/química , Zinco/química , Sítios de Ligação , Diálise/instrumentação , Humanos
17.
Anal Chem ; 89(1): 57-70, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28105825
18.
Biomed Opt Express ; 7(9): 3449-3460, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699111

RESUMO

Red blood cells (RBC) in two-photon excited fluorescence (TPEF) microscopy usually appear as dark disks because of their low fluorescent signal. Here we use 15fs 800nm pulses for TPEF, 45fs 1060nm pulses for three-photon excited fluorescence, and third harmonic generation (THG) imaging. We find sufficient fluorescent signal that we attribute to hemoglobin fluorescence after comparing time and wavelength resolved spectra of other expected RBC endogenous fluorophores: NADH, FAD, biliverdin, and bilirubin. We find that both TPEF and THG microscopy can be used to examine erythrocyte morphology non-invasively without breaching a blood storage bag.

19.
Anal Methods ; 8(31): 6005-6012, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27617038

RESUMO

A mini-review with 79 references. In this review, the most recent trends in 3D-printed microfluidic devices are discussed. In addition, a focus is given to the fabrication aspects of these devices, with the supplemental information containing detailed instructions for designing a variety of structures including: a microfluidic channel, threads to accommodate commercial fluidic fittings, a flow splitter; a well plate, a mold for PDMS channel casting; and how to combine multiple designs into a single device. The advantages and limitations of 3D-printed microfluidic devices are thoroughly discussed, as are some future directions for the field.

20.
EBioMedicine ; 11: 249-252, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27528268

RESUMO

OBJECTIVE: To investigate the utility of a blood-based lab test as an aid in identifying patients with Multiple Sclerosis (MS). METHODS: Whole blood from subjects with MS, non-MS neurologic diseases, and healthy controls was centrifuged to isolate erythrocytes. Following the addition of exogenous C-peptide, the supernatant was assayed for remaining C-peptide using an enzyme linked immunosorbent assay (ELISA). RESULTS: The cohort included subjects with MS (n=86), other non-MS neurologic diseases (OND n=75), and healthy controls (n=39). The average C-peptide bound to erythrocytes in MS samples (3.51±0.59pmol) was significantly higher than non-MS subjects (2.23±0.51pmol; p<0.001) and healthy controls (1.99±0.32pmol; p<0.001). Using a cutoff of 3.04pmol of C-peptide uptake, the test exhibited a sensitivity of 98.3% and specificity of 89.5%. A receiver-operator characteristic (ROC) curve generated from the ratio of the sensitivity to 1-selectivity resulted in an area under the curve of 0.97. CONCLUSIONS: Exogenous C-peptide binding to erythrocytes has potential value in distinguishing MS subjects from non-MS neurologic diseases and healthy controls.


Assuntos
Peptídeo C/metabolismo , Eritrócitos/metabolismo , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/metabolismo , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/terapia , Ligação Proteica , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA