Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
4.
Neurobiol Dis ; 186: 106285, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690676

RESUMO

Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aß). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease, and Dementia with Lewy Bodies, but less so in Alzheimer's Disease (AD), despite the fact that accumulation of α-syn has been confirmed in over 50% of postmortem brains neuropathologically diagnosed with AD. To date, no therapeutic strategy has effectively or consistently downregulated α-syn in AD. Here we tested the hypothesis that by using a systemically-delivered peptide (ApoB11) bound to a modified antisense oligonucleotide against α-syn (ASO-α-syn), we can downregulate α-syn expression in an AD mouse model and improve behavioral and neuropathologic phenotypes. Our results demonstrate that monthly systemic treatment with of ApoB11:ASO α-syn beginning at 6 months of age reduces expression of α-synuclein in the brains of 9-month-old AD mice. Downregulation of α-syn led to reduction in Aß plaque burden, prevented neuronal loss and astrogliosis. Furthermore, we found that AD mice treated with ApoB11:ASO α-syn had greatly improved hippocampal and spatial memory function in comparison to their control counterparts. Collectively, our data supports the reduction of α-syn through use of systemically-delivered ApoB11:ASO α-syn as a promising future disease-modifying therapeutic for AD.


Assuntos
Doença de Alzheimer , Oligonucleotídeos Antissenso , Animais , Camundongos , Oligonucleotídeos Antissenso/farmacologia , alfa-Sinucleína/genética , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Apolipoproteínas B , Modelos Animais de Doenças
5.
J Alzheimers Dis ; 95(1): 349-361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522208

RESUMO

BACKGROUND: Alzheimer's disease (AD) cases are often characterized by the pathological accumulation of α-synuclein (α-syn) in addition to amyloid-ß (Aß) and tau hallmarks. The role of α-syn has been extensively studied in synucleinopathy disorders, but less so in AD. Recent studies have shown that α-syn may also play a role in AD and its downregulation may be protective against the toxic effects of Aß accumulation. OBJECTIVE: We hypothesized that selectively knocking down α-syn via RNA interference improves the neuropathological and biochemical findings in AD mice. METHODS: Here we used amyloid precursor protein transgenic (APP-Tg) mice to model AD and explore pathologic and behavioral phenotypes with knockdown of α-syn using RNA interference. We selectively reduced α-syn levels by stereotaxic bilateral injection of either LV-shRNA α-syn or LV-shRNA-luc (control) into the hippocampus of AD mice. RESULTS: We found that downregulation of α-syn results in significant reduction in the number of Aß plaques. In addition, mice treated with LV-shRNA α-syn had amelioration of abnormal microglial activation (Iba1) and astrocytosis (GFAP) phenotypes in AD mice. CONCLUSION: Our data suggests a novel link between Aß and α-syn pathology as well as a new therapeutic angle for targeting AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Interferência de RNA , Precursor de Proteína beta-Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Hipocampo/patologia , Placa Amiloide/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas tau/metabolismo , Modelos Animais de Doenças
6.
Amyloid ; 30(4): 357-363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37140928

RESUMO

INTRODUCTION: Hereditary gelsolin (AGel) amyloidosis is a systemic disease that is characterised by neurologic, ophthalmologic, dermatologic, and other organ involvements. We describe the clinical features with a focus on neurological manifestations in a cohort of patients with AGel amyloidosis referred to the Amyloidosis Centre in the United States. METHODS: Fifteen patients with AGel amyloidosis were included in the study between 2005 and 2022 with the permission of the Institutional Review Board. Data were collected from the prospectively maintained clinical database, electronic medical records and telephone interviews. RESULTS: Neurologic manifestations were featured in 15 patients: cranial neuropathy in 93%, peripheral and autonomic neuropathy in 57% and bilateral carpal tunnel syndrome in 73% of cases. A novel p.Y474H gelsolin variant featured a unique clinical phenotype that differed from the one associated with the most common variant of AGel amyloidosis. DISCUSSION: We report high rates of cranial and peripheral neuropathy, carpal tunnel syndrome and autonomic dysfunction in patients with systemic AGel amyloidosis. The awareness of these features will enable earlier diagnosis and timely screening for end-organ dysfunction. The characterisation of pathophysiology will assist the development of therapeutic options in AGel amyloidosis.


Assuntos
Neuropatias Amiloides Familiares , Síndrome do Túnel Carpal , Amiloidose de Cadeia Leve de Imunoglobulina , Doenças do Sistema Nervoso , Disautonomias Primárias , Humanos , Gelsolina/genética , Gelsolina/metabolismo , Síndrome do Túnel Carpal/genética , Neuropatias Amiloides Familiares/complicações , Neuropatias Amiloides Familiares/genética , Amiloidose de Cadeia Leve de Imunoglobulina/complicações , Amiloidose de Cadeia Leve de Imunoglobulina/genética
7.
ACS Chem Neurosci ; 14(5): 885-896, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749600

RESUMO

Aggregation of misfolded α-synuclein (α-syn) protein in the periphery and central nervous system (CNS) gives rise to a group of disorders, which are labeled collectively as synucleinopathies. These clinically distinct disorders are known as pure autonomic failure, Parkinson's disease (PD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). In the case of PD, it has been demonstrated that toxic aggregates of α-syn protein not only cause apoptosis of dopamine neurons but its accumulation in the neocortex and limbic area principally contributes to dementia. In our multifunctional drug discovery research for PD, we converted one of our catechol-containing lead dopamine agonist molecules D-520 into its prodrug D-685. The prodrug exhibited higher in vivo anti-Parkinsonian efficacy in a reserpinized PD animal model than the parent D-520 and exhibited facile brain penetration. In our study with an α-syn transgenic animal model (D line) for PD and dementia with Lewy bodies (DLB), we have shown that 1 month of chronic treatment with the compound D-685 was sufficient to reduce the accumulation of α-syn and phospho-α-syn in the cortex, hippocampus, and striatum areas significantly compared to the control tg mice. Furthermore, D-685 did not exhibit any deleterious effect in the CNS as was evident from the neuron and microglia studies. Future studies will further explore in depth the potential of D-685 to modify disease progression while addressing symptomatic deficits.


Assuntos
Demência , Doença por Corpos de Lewy , Doença de Parkinson , Pró-Fármacos , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças
9.
Neurobiol Dis ; 178: 106010, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702318

RESUMO

Mutations or triplication of the alpha synuclein (ASYN) gene contribute to synucleinopathies including Parkinson's disease (PD), Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent evidence suggests that ASYN also plays an important role in amyloid-induced neurotoxicity, although the mechanism(s) remains unknown. One hypothesis is that accumulation of ASYN alters endolysosomal pathways to impact axonal trafficking and processing of the amyloid precursor protein (APP). To define an axonal function for ASYN, we used a transgenic mouse model of synucleinopathy that expresses a GFP-human ASYN (GFP-hASYN) transgene and an ASYN knockout (ASYN-/-) mouse model. Our results demonstrate that expression of GFP-hASYN in primary neurons derived from a transgenic mouse impaired axonal trafficking and processing of APP. In addition, axonal transport of BACE1, Rab5, Rab7, lysosomes and mitochondria were also reduced in these neurons. Interestingly, axonal transport of these organelles was also affected in ASYN-/- neurons, suggesting that ASYN plays an important role in maintaining normal axonal transport function. Therefore, selective impairment of trafficking and processing of APP by ASYN may act as a potential mechanism to induce pathological features of Alzheimer's disease (AD) in PD patients.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases , Doença de Parkinson/genética , Camundongos Transgênicos , Lisossomos/metabolismo
10.
Amyloid ; 30(2): 141-152, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36286264

RESUMO

BACKGROUND: The amyloidogenic transthyretin (TTR) variant, V122I, occurs in 4% of the African American population and frequently presents as a restricted cardiomyopathy. While heterozygosity for TTR V122I predominates, several compound heterozygous cases have been previously described. Herein, we detail features of ATTRv amyloidosis associated with novel compound heterozygous TTR mutation, T60I/V122I and provide evidence supporting the amyloidogenecity of T60I. METHODS: A 63-year-old African American female presented with atrial fibrillation, congestive heart failure, autonomic and peripheral neuropathy. In vitro studies of TTR T60I and V122I were undertaken to compare the biophysical properties of the proteins. RESULTS: Congophilic deposits in a rectal biopsy were immunohistochemically positive for TTR. Serum screening by isoelectric focussing revealed two TTR variants in the absence of wild-type protein. DNA sequencing identified compound heterozygous TTR gene mutations, c.239C > T and c.424G > A. Adipose amyloid deposits were composed of both T60I and V122I. While kinetic stabilities of T60I and V122I variants were similar, distinct thermodynamic stabilities and amyloid growth kinetics were observed. CONCLUSIONS: This report provides clinical and experimental results supporting the amyloidogenic nature of a novel TTR T60I variant. In vitro data indicate that the destabilising effect of individual T60I and V122I variants appears to be additive rather than synergistic.


Assuntos
Neuropatias Amiloides Familiares , Amiloidose , Insuficiência Cardíaca , Doenças do Sistema Nervoso Periférico , Humanos , Feminino , Pessoa de Meia-Idade , Amiloidose/metabolismo , Insuficiência Cardíaca/genética , Amiloide/metabolismo , Heterozigoto , Doenças do Sistema Nervoso Periférico/complicações , Pré-Albumina/genética , Pré-Albumina/metabolismo , Neuropatias Amiloides Familiares/genética
11.
Amyloid ; 29(4): 255-262, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35575118

RESUMO

BACKGROUND: ß2-microglobulin amyloidosis was first described in the 1980s as a protein deposition disease associated with long-term haemodialysis. More recently, two inherited forms resulting from separate point mutations in the ß2-microglobulin gene have been identified. In this report, we detail a novel ß2M variant, P32L, caused by a unique dinucleotide mutation that is linked to systemic hereditary ß2-microglobulin amyloidosis. METHODS: Three family members from a Portuguese kinship featured cardiomyopathy, requiring organ transplantation in one case, along with soft tissue involvement; other involvements included gastrointestinal, neuropathic and sicca syndrome. In vitro studies with recombinant P32L, P32G, D76N and wild-type ß2-microglobulin were undertaken to compare the biophysical properties of the proteins. RESULTS: The P32L variant was caused by the unique heterozygous dinucleotide mutation c.154_155delinsTT. Amyloid disease featured lowered serum ß2-microglobulin levels with near equal amounts of circulating P32L and wild-type proteins; amyloid deposits were composed exclusively of P32L variant protein. In vitro studies of P32L demonstrated thermodynamic and chemical instability and enhanced susceptibility to proteolysis with rapid formation of pre-fibrillar oligomeric structures by N- and C-terminally truncated species under physiological conditions. CONCLUSIONS: This work provides both clinical and experimental evidence supporting the critical role of P32 residue replacement in ß2M amyloid fibrillogenesis.


Assuntos
Amiloidose Familiar , Amiloidose , Humanos , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose Familiar/genética , Microglobulina beta-2/metabolismo , Prolina/genética
12.
Methods Mol Biol ; 2383: 447-457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766306

RESUMO

Alzheimer's disease (AD), Pick's disease, fronto-temporal lobar degeneration, cortico-basal degeneration, and primary age related tauopathy are examples of neurodegenerative disorders with tau accumulation and jointly referred as "tauopathies." The mechanisms through which tau leads to neurodegeneration are not fully understood but include conversion into toxic oligomers and protofibrils, cell-to-cell propagation, post-transcriptional modifications and as a mediator of cell death signals among others. Potential therapeutics includes reducing tau synthesis (e.g., anti-sense); targeting selective tau species and aggregates or blocking cell-to-cell transmission (e.g., antibodies) or by promoting clearance of tau (e.g., autophagy activators). Among them, immunotherapy is currently one of the approaches most actively explored including active, passive, and cellular. A potential problem with immunotherapy has been the trafficking of the antibodies into the CNS. In this chapter, we describe a method for the production and testing of viral vector driven, brain-penetrating, single chain antibodies that specifically recognize 3RTau. These single chain antibodies are modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments recognize tau with potential value for the treatment of AD and related dementias.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/terapia , Encéfalo/metabolismo , Degeneração Corticobasal , Humanos , Fatores Imunológicos , Anticorpos de Cadeia Única , Tauopatias , Proteínas tau/metabolismo
13.
PLoS One ; 16(9): e0251611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587152

RESUMO

Alternative splicing of the gene MAPT produces several isoforms of tau protein. Overexpression of these isoforms is characteristic of tauopathies, which are currently untreatable neurodegenerative diseases. Though non-canonical functions of tau have drawn interest, the role of tau isoforms in these diseases has not been fully examined and may reveal new details of tau-driven pathology. In particular, tau has been shown to promote activation of transposable elements-highly regulated nucleotide sequences that replicate throughout the genome and can promote immunologic responses and cellular stress. This study examined tau isoforms' roles in promoting cell damage and dysregulation of genes and transposable elements at a family-specific and locus-specific level. We performed immunofluorescence, Western blot and cytotoxicity assays, along with paired-end RNA sequencing on differentiated SH-SY5Y cells infected with lentiviral constructs of tau isoforms and treated with amyloid-beta oligomers. Our transcriptomic findings were validated using publicly available RNA-sequencing data from Alzheimer's disease, progressive supranuclear palsy and control human samples from the Accelerating Medicine's Partnership for AD (AMP-AD). Significance for biochemical assays was determined using Wilcoxon ranked-sum tests and false discovery rate. Transcriptome analysis was conducted through DESeq2 and the TEToolkit suite available from the Hammell lab at Cold Spring Harbor Laboratory. Our analyses show overexpression of different tau isoforms and their interactions with amyloid-beta in SH-SY5Y cells result in isoform-specific changes in the transcriptome, with locus-specific transposable element dysregulation patterns paralleling those seen in patients with Alzheimer's disease and progressive supranuclear palsy. Locus-level transposable element expression showed increased dysregulation of L1 and Alu sites, which have been shown to drive pathology in other neurological diseases. We also demonstrated differences in rates of cell death in SH-SY5Y cells depending on tau isoform overexpression. These results demonstrate the importance of examining tau isoforms' role in neurodegeneration and of further examining transposable element dysregulation in tauopathies and its role in activating the innate immune system.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/farmacologia , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica/métodos , Lentivirus/genética , Paralisia Supranuclear Progressiva/genética , Proteínas tau/genética , Processamento Alternativo , Estudos de Casos e Controles , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Transfecção
14.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33651103

RESUMO

A potent γ-secretase modulator (GSM) has been developed to circumvent problems associated with γ-secretase inhibitors (GSIs) and to potentially enable use in primary prevention of early-onset familial Alzheimer's disease (EOFAD). Unlike GSIs, GSMs do not inhibit γ-secretase activity but rather allosterically modulate γ-secretase, reducing the net production of Aß42 and to a lesser extent Aß40, while concomitantly augmenting production of Aß38 and Aß37. This GSM demonstrated robust time- and dose-dependent efficacy in acute, subchronic, and chronic studies across multiple species, including primary and secondary prevention studies in a transgenic mouse model. The GSM displayed a >40-fold safety margin in rats based on a comparison of the systemic exposure (AUC) at the no observed adverse effect level (NOAEL) to the 50% effective AUC or AUCeffective, the systemic exposure required for reducing levels of Aß42 in rat brain by 50%.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/metabolismo , Fenetilaminas/administração & dosagem , Piridazinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
15.
Exp Mol Med ; 53(2): 281-290, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33594256

RESUMO

Synucleinopathies are age-related neurological disorders characterized by the progressive deposition of α-synuclein (α-syn) aggregates and include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Although cell-to-cell α-syn transmission is thought to play a key role in the spread of α-syn pathology, the detailed mechanism is still unknown. Neuroinflammation is another key pathological feature of synucleinopathies. Previous studies have identified several immune receptors that mediate neuroinflammation in synucleinopathies, such as Toll-like receptor 2 (TLR2). However, the species of α-syn aggregates varies from study to study, and how different α-syn aggregate species interact with innate immune receptors has yet to be addressed. Therefore, we investigated whether innate immune receptors can facilitate the uptake of different species of α-syn aggregates. Here, we examined whether stimulation of TLRs could modulate the cellular uptake and degradation of α-syn fibrils despite a lack of direct interaction. We observed that stimulation of TLR2 in vitro accelerated α-syn fibril uptake in neurons and glia while delaying the degradation of α-syn in neurons and astrocytes. Internalized α-syn was rapidly degraded in microglia regardless of whether TLR2 was stimulated. However, cellular α-syn uptake and degradation kinetics were not altered by TLR4 stimulation. In addition, upregulation of TLR2 expression in a synucleinopathy mouse model increased the density of Lewy-body-like inclusions and induced morphological changes in microglia. Together, these results suggest that cell type-specific modulation of TLR2 may be a multifaceted and promising therapeutic strategy for synucleinopathies; inhibition of neuronal and astroglial TLR2 decreases pathogenic α-syn transmission, but activation of microglial TLR2 enhances microglial extracellular α-syn clearance.


Assuntos
Encéfalo/imunologia , Encéfalo/metabolismo , Imunidade Inata , Receptores Imunológicos/agonistas , Receptores Imunológicos/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos , Encéfalo/patologia , Linhagem Celular , Espaço Extracelular/metabolismo , Humanos , Imunidade Inata/genética , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Modelos Animais , Modelos Biológicos , Neurônios/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica , Transporte Proteico , Proteólise , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , alfa-Sinucleína/genética
17.
Science ; 371(6526)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33273062

RESUMO

Here we describe mechanistically distinct enzymes (a kinase, a guanosine triphosphatase, and a ubiquitin protein hydrolase) that function in disparate biochemical pathways and can also act in concert to mediate a series of redox reactions. Each enzyme manifests a second, noncanonical function-transnitrosylation-that triggers a pathological biochemical cascade in mouse models and in humans with Alzheimer's disease (AD). The resulting series of transnitrosylation reactions contributes to synapse loss, the major pathological correlate to cognitive decline in AD. We conclude that enzymes with distinct primary reaction mechanisms can form a completely separate network for aberrant transnitrosylation. This network operates in the postreproductive period, so natural selection against such abnormal activity may be decreased.


Assuntos
Doença de Alzheimer/enzimologia , Quinase 5 Dependente de Ciclina/metabolismo , Dinaminas/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Sinapses/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Cisteína/genética , Cisteína/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Nitroarginina/farmacologia , Oxirredução , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sinapses/patologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
18.
Transl Neurodegener ; 9(1): 26, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552912

RESUMO

BACKGROUND: In Alzheimer's Disease (AD), about one-third of the risk genes identified by GWAS encode proteins that function predominantly in the endocytic pathways. Among them, the Ras and Rab Interactor 3(RIN3) is a guanine nucleotide exchange factor (GEF) for the Rab5 small GTPase family and has been implicated to be a risk factor for both late onset AD (LOAD) and sporadic early onset AD (sEOAD). However, how RIN3 is linked to AD pathogenesis is currently undefined. METHODS: Quantitative PCR and immunoblotting were used to measure the RIN3 expression level in mouse brain tissues and cultured basal forebrain cholinergic neuron (BFCNs). Immunostaining was used to define subcellular localization of RIN3 and to visualize endosomal changes in cultured primary BFCNs and PC12 cells. Recombinant flag-tagged RIN3 protein was purified from HEK293T cells and was used to define RIN3-interactomes by mass spectrometry. RIN3-interacting partners were validated by co-immunoprecipitation, immunofluorescence and yeast two hybrid assays. Live imaging of primary neurons was used to examine axonal transport of amyloid precursor protein (APP) and ß-secretase 1 (BACE1). Immunoblotting was used to detect protein expression, processing of APP and phosphorylated forms of Tau. RESULTS: We have shown that RIN3 mRNA level was significantly increased in the hippocampus and cortex of APP/PS1 mouse brain. Basal forebrain cholinergic neurons (BFCNs) cultured from E18 APP/PS1 mouse embryos also showed increased RIN3 expression accompanied by early endosome enlargement. In addition, via its proline rich domain, RIN3 recruited BIN1(bridging integrator 1) and CD2AP (CD2 associated protein), two other AD risk factors, to early endosomes. Interestingly, overexpression of RIN3 or CD2AP promoted APP cleavage to increase its carboxyl terminal fragments (CTFs) in PC12 cells. Upregulation of RIN3 or the neuronal isoform of BIN1 increased phosphorylated Tau level. Therefore, upregulation of RIN3 expression promoted accumulation of APP CTFs and increased phosphorylated Tau. These effects by RIN3 was rescued by the expression of a dominant negative Rab5 (Rab5S34N) construct. Our study has thus pointed to that RIN3 acts through Rab5 to impact endosomal trafficking and signaling. CONCLUSION: RIN3 is significantly upregulated and correlated with endosomal dysfunction in APP/PS1 mouse. Through interacting with BIN1 and CD2AP, increased RIN3 expression alters axonal trafficking and procession of APP. Together with our previous studies, our current work has thus provided important insights into the role of RIN3 in regulating endosomal signaling and trafficking.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/biossíntese , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Regulação para Cima/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Proteínas de Transporte/genética , Células Cultivadas , Endossomos/genética , Endossomos/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células PC12 , Domínios e Motivos de Interação entre Proteínas/fisiologia , Ratos
19.
Sci Rep ; 9(1): 16947, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740740

RESUMO

The over-expression and aggregation of α-synuclein (αSyn) are linked to the onset and pathology of Parkinson's disease. Native monomeric αSyn exists in an intrinsically disordered ensemble of interconverting conformations, which has made its therapeutic targeting by small molecules highly challenging. Nonetheless, here we successfully target the monomeric structural ensemble of αSyn and thereby identify novel drug-like small molecules that impact multiple pathogenic processes. Using a surface plasmon resonance high-throughput screen, in which monomeric αSyn is incubated with microchips arrayed with tethered compounds, we identified novel αSyn interacting drug-like compounds. Because these small molecules could impact a variety of αSyn forms present in the ensemble, we tested representative hits for impact on multiple αSyn malfunctions in vitro and in cells including aggregation and perturbation of vesicular dynamics. We thereby identified a compound that inhibits αSyn misfolding and is neuroprotective, multiple compounds that restore phagocytosis impaired by αSyn overexpression, and a compound blocking cellular transmission of αSyn. Our studies demonstrate that drug-like small molecules that interact with native αSyn can impact a variety of its pathological processes. Thus, targeting the intrinsically disordered ensemble of αSyn offers a unique approach to the development of small molecule research tools and therapeutics for Parkinson's disease.


Assuntos
Bibliotecas de Moléculas Pequenas/farmacologia , alfa-Sinucleína/metabolismo , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Fagocitose/efeitos dos fármacos , Dobramento de Proteína , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/toxicidade , Ressonância de Plasmônio de Superfície , alfa-Sinucleína/química , alfa-Sinucleína/efeitos dos fármacos
20.
Neurobiol Dis ; 132: 104582, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445162

RESUMO

There are no approved drug therapies that can prevent or slow the progression of Parkinson's disease (PD). Accumulation and aggregation of α-synuclein protein is observed throughout the nervous system in PD. α-Synuclein is a core component of Lewy bodies and neurites that neuropathologically define PD, suggesting that α-synuclein may be a key causative agent in PD. Recent experimental data suggest that PD progression may arise due to spreading of pathological forms of extracellular α-synuclein throughout the brain via a cellular release, uptake and seeding mechanism. We have developed a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. MEDI1341 binds both monomeric and aggregated forms of α-synuclein. In vitro, MEDI1341 blocks cell-to-cell transmission of pathologically relevant α-synuclein preformed fibrils (pffs). After intravenous injection into rats and cynomolgus monkeys, MEDI1341 rapidly enters the central nervous system and lowers free extracellular α-synuclein levels in the interstitial fluid (ISF) and cerebrospinal fluid (CSF) compartments. Using a novel lentiviral-based in vivo mouse model of α-synuclein spreading in the brain, we show that treatment with MEDI1341 significantly reduces α-synuclein accumulation and propagation along axons. In this same model, we demonstrate that an effector-null version of the antibody was equally as effective as one with effector function. MEDI1341 is now in Phase 1 human clinical trial testing as a novel treatment for α-synucleinopathies including PD with the aim to slow or halt disease progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Encéfalo/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , Animais , Especificidade de Anticorpos , Humanos , Macaca fascicularis , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA