Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 42(3): 444-463.e10, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38428410

RESUMO

Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.


Assuntos
Linfoma Folicular , Humanos , Linfócitos B , Linfoma Folicular/genética , Multiômica , Estudos Prospectivos , Recidiva , Microambiente Tumoral , Ensaios Clínicos como Assunto
2.
Pathogens ; 13(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392905

RESUMO

Single-cell RNA sequencing has soared in popularity in recent years. The ability to deeply profile the states of individual cells during the course of disease or infection has helped to expand our knowledge of coordinated responses. However, significant challenges arise when performing this analysis in high containment settings such as biosafety level 3 (BSL-3), BSL-3+ and BSL-4. Working in containment is necessary for many important pathogens, such as Ebola virus, Marburg virus, Lassa virus, Nipah and Hendra viruses. Since standard operating procedures (SOPs) for inactivation are extensive and may compromise sample integrity, we tested whether the removal of single-cell sequencing libraries from containment laboratories using existing inactivation protocols for nucleic acid extraction (Trizol, RLT buffer, or AVL buffer) was feasible. We have demonstrated that the inactivation does not affect sample quality and can work with existing methods for inactivation.

3.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38168288

RESUMO

Spatial patterns of cells and other biological elements drive both physiologic and pathologic processes within tissues. While many imaging and transcriptomic methods document tissue organization, discerning these patterns is challenging, especially when they involve multiple elements in complex arrangements. To address this challenge, we present Spatial Patterning Analysis of Cellular Ensembles (SPACE), an R package for analysis of high-plex spatial data. SPACE is compatible with any data collection modality that records values (i.e., categorical cell/structure types or quantitative expression levels) at fixed spatial coordinates (i.e., 2d pixels or 3d voxels). SPACE detects not only broad patterns of co-occurrence but also context-dependent associations, quantitative gradients and orientations, and other organizational complexities. Via a robust information theoretic framework, SPACE explores all possible ensembles of tissue elements - single elements, pairs, triplets, and so on - and ranks the most strongly patterned ensembles. For single images, rankings reflect patterns that differ from random assortment. For sets of images, rankings reflect patterns that differ across sample groups (e.g., genotypes, treatments, timepoints, etc.). Further tools then thoroughly characterize the nature of each pattern for intuitive interpretation. We validate SPACE and demonstrate its advantages using murine lymph node images for which ground truth has been defined. We then use SPACE to detect new patterns across varied datasets, including tumors and tuberculosis granulomas.

4.
Nat Microbiol ; 8(8): 1397-1407, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488255

RESUMO

Although virus-host interactions are usually studied in a single cell type using in vitro assays in immortalized cell lines or isolated cell populations, it is important to remember that what is happening inside one infected cell does not translate to understanding how an infected cell behaves in a tissue, organ or whole organism. Infections occur in complex tissue environments, which contain a host of factors that can alter the course of the infection, including immune cells, non-immune cells and extracellular-matrix components. These factors affect how the host responds to the virus and form the basis of the protective response. To understand virus infection, tools are needed that can profile the tissue environment. This Review highlights methods to study virus-host interactions in the infection microenvironment.


Assuntos
Viroses , Vírus , Humanos , Interações entre Hospedeiro e Microrganismos , Linhagem Celular
6.
Nat Protoc ; 17(2): 378-401, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022622

RESUMO

High-content imaging is needed to catalog the variety of cellular phenotypes and multicellular ecosystems present in metazoan tissues. We recently developed iterative bleaching extends multiplexity (IBEX), an iterative immunolabeling and chemical bleaching method that enables multiplexed imaging (>65 parameters) in diverse tissues, including human organs relevant for international consortia efforts. IBEX is compatible with >250 commercially available antibodies and 16 unique fluorophores, and can be easily adopted to different imaging platforms using slides and nonproprietary imaging chambers. The overall protocol consists of iterative cycles of antibody labeling, imaging and chemical bleaching that can be completed at relatively low cost in 2-5 d by biologists with basic laboratory skills. To support widespread adoption, we provide extensive details on tissue processing, curated lists of validated antibodies and tissue-specific panels for multiplex imaging. Furthermore, instructions are included on how to automate the method using competitively priced instruments and reagents. Finally, we present a software solution for image alignment that can be executed by individuals without programming experience using open-source software and freeware. In summary, IBEX is a noncommercial method that can be readily implemented by academic laboratories and scaled to achieve high-content mapping of diverse tissues in support of a Human Reference Atlas or other such applications.


Assuntos
Ecossistema
7.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35039442

RESUMO

Advanced age is a key predictor of severe COVID-19. To gain insight into this relationship, we used the rhesus macaque model of SARS-CoV-2 infection. Eight older and eight younger macaques were inoculated with SARS-CoV-2. Animals were evaluated using viral RNA quantification, clinical observations, thoracic radiographs, single-cell transcriptomics, multiparameter flow cytometry, multiplex immunohistochemistry, cytokine detection, and lipidomics analysis at predefined time points in various tissues. Differences in clinical signs, pulmonary infiltrates, and virus replication were limited. Transcriptional signatures of inflammation-associated genes in bronchoalveolar lavage fluid at 3 dpi revealed efficient mounting of innate immune defenses in both cohorts. However, age-specific divergence of immune responses emerged during the post-acute phase. Older animals exhibited sustained local inflammatory innate responses, whereas local effector T-cell responses were induced earlier in the younger animals. Circulating lipid mediator and cytokine levels highlighted increased repair-associated signals in the younger animals, and persistent pro-inflammatory responses in the older animals. In summary, despite similar disease outcomes, multi-omics profiling suggests that age may delay or impair antiviral cellular immune responses and delay efficient return to immune homeostasis.


Assuntos
Envelhecimento/imunologia , COVID-19/imunologia , COVID-19/veterinária , SARS-CoV-2/imunologia , Doença Aguda , Animais , Formação de Anticorpos/imunologia , Líquido da Lavagem Broncoalveolar , COVID-19/complicações , COVID-19/genética , Citocinas/sangue , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Imunidade Celular/genética , Imunomodulação , Inflamação/complicações , Inflamação/patologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Tecido Linfoide/patologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Modelos Biológicos , Análise de Célula Única , Linfócitos T/imunologia , Transcrição Gênica
9.
iScience ; 24(9): 103025, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522865

RESUMO

Resolution of infection results in development of trained innate immunity which is typically beneficial for defense against unrelated secondary infection. Epigenetic changes including modification of histones via binding of various polar metabolites underlie the establishment of trained innate immunity. Therefore, host metabolism and this response are intimately linked. However, little is known regarding the influence of lipids on the development and function of trained immunity. Utilizing two models of pulmonary bacterial infection combined with multi-omic approaches, we identified persistent, pathogen-specific changes to the lung lipidome that correlated with differences in the trained immune response against a third unrelated pathogen. Further, we establish the specific cellular populations in the lung that contribute to this altered lipidome. Together these results expand our understanding of the pulmonary trained innate immune response and the contributions of host lipids in informing that response.

10.
11.
Lancet Infect Dis ; 21(6): 876-886, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33484646

RESUMO

BACKGROUND: Lassa fever is endemic in several west African countries. Case-fatality rates ranging from 21% to 69% have been reported. The pathophysiology of the disease in humans and determinants of mortality remain poorly understood. We aimed to determine host protein biomarkers capable of determining disease outcome. METHODS: In this observational study, we analysed left-over blood samples from patients who tested positive for Lassa fever at Irrua Specialist Teaching Hospital, Nigeria, between January, 2014, and April, 2017. We measured viral load, concentrations of clinical chemistry parameters, and levels of 62 circulating proteins involved in inflammation, immune response, and haemostasis. Patients with a known outcome (survival or death) and at least 200 µL of good-quality diagnostic sample were included in logistic regression modelling to assess the correlation of parameters with Lassa fever outcome. Individuals who gave consent could further be enrolled into a longitudinal analysis to assess the association of parameters with Lassa fever outcome over time. Participants were divided into two datasets for the statistical analysis: a primary dataset (samples taken between Jan 1, 2014, and April 1, 2016), and a secondary dataset (samples taken between April 1, 2016, and April 1, 2017). Biomarkers were ranked by area under the receiver operating characteristic curve (AUC) from highest (most predictive) to lowest (least predictive). FINDINGS: Of 554 patients who tested positive for Lassa fever during the study period, 201 (131 in the primary dataset and 70 in the secondary dataset) were included in the biomarker analysis, of whom 74 (49 in the primary dataset and 25 in the secondary dataset) had died and 127 (82 in the primary dataset and 45 in the secondary dataset) had survived. Cycle threshold values (indicating viral load) and levels of 18 host proteins at the time of admission to hospital were significantly correlated with fatal outcome. The best predictors of outcome in both datasets were plasminogen activator inhibitor-1 (PAI-1; AUC 0·878 in the primary dataset and 0·876 in the secondary dataset), soluble thrombomodulin (TM; 0·839 in the primary dataset and 0·875 in the secondary dataset), and soluble tumour necrosis factor receptor superfamily member 1A (TNF-R1; 0·807 in the primary dataset and 0·851 in the secondary dataset), all of which had higher prediction accuracy than viral load (0·774 in the primary dataset and 0·837 in the secondary dataset). Longitudinal analysis (150 patients, of whom 36 died) showed that of the biomarkers that were predictive at admission, PAI-1 levels consistently decreased to normal levels in survivors but not in those who died. INTERPRETATION: The identification of PAI-1 and soluble TM as markers of fatal Lassa fever at admission, and of PAI-1 as a marker of fatal Lassa fever over time, suggests that dysregulated coagulation and fibrinolysis and endothelial damage have roles in the pathophysiology of Lassa fever, providing a mechanistic explanation for the association of Lassa fever with oedema and bleeding. These novel markers might aid in clinical risk stratification and disease monitoring. FUNDING: German Research Foundation, Leibniz Association, and US National Institutes of Health.


Assuntos
Biomarcadores/sangue , Febre Lassa/diagnóstico , Febre Lassa/mortalidade , Febre Lassa/fisiopatologia , Vírus Lassa/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Febre Lassa/epidemiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Mortalidade , Nigéria/epidemiologia , Taxa de Sobrevida , Carga Viral
12.
Sci Transl Med ; 13(578)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33431511

RESUMO

Detailed knowledge about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is important for uncovering the viral and host factors that contribute to coronavirus disease 2019 (COVID-19) pathogenesis. Old-World nonhuman primates recapitulate mild to moderate cases of COVID-19, thereby serving as important pathogenesis models. We compared African green monkeys inoculated with infectious SARS-CoV-2 or irradiated, inactivated virus to study the dynamics of virus replication throughout the respiratory tract. Genomic RNA from the animals inoculated with the irradiated virus was found to be highly stable, whereas subgenomic RNA, an indicator of viral replication, was found to degrade quickly. We combined this information with single-cell RNA sequencing of cells isolated from the lung and lung-draining mediastinal lymph nodes and developed new analysis methods for unbiased targeting of important cells in the host response to SARS-CoV-2 infection. Through detection of reads to the viral genome, we were able to determine that replication of the virus in the lungs appeared to occur mainly in pneumocytes, whereas macrophages drove the inflammatory response. Monocyte-derived macrophages recruited to the lungs, rather than tissue-resident alveolar macrophages, were most likely to be responsible for phagocytosis of infected cells and cellular debris early in infection, with their roles switching during clearance of infection. Together, our dataset provides a detailed view of the dynamics of virus replication and host responses over the course of mild COVID-19 and serves as a valuable resource to identify therapeutic targets.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Análise de Sequência de RNA , Análise de Célula Única , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/genética , Chlorocebus aethiops , DNA Viral/genética , Feminino , Genoma Viral/genética , Inflamação/patologia , Pulmão/patologia , Linfonodos/patologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , Mediastino/patologia , Transcrição Gênica , Carga Viral , Replicação Viral
13.
Nature ; 589(7840): 131-136, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239787

RESUMO

The liver connects the intestinal portal vasculature with the general circulation, using a diverse array of immune cells to protect from pathogens that translocate from the gut1. In liver lobules, blood flows from portal triads that are situated in periportal lobular regions to the central vein via a polarized sinusoidal network. Despite this asymmetry, resident immune cells in the liver are considered to be broadly dispersed across the lobule. This differs from lymphoid organs, in which immune cells adopt spatially biased positions to promote effective host defence2,3. Here we used quantitative multiplex imaging, genetic perturbations, transcriptomics, infection-based assays and mathematical modelling to reassess the relationship between the localization of immune cells in the liver and host protection. We found that myeloid and lymphoid resident immune cells concentrate around periportal regions. This asymmetric localization was not developmentally controlled, but resulted from sustained MYD88-dependent signalling induced by commensal bacteria in liver sinusoidal endothelial cells, which in turn regulated the composition of the pericellular matrix involved in the formation of chemokine gradients. In vivo experiments and modelling showed that this immune spatial polarization was more efficient than a uniform distribution in protecting against systemic bacterial dissemination. Together, these data reveal that liver sinusoidal endothelial cells sense the microbiome, actively orchestrating the localization of immune cells, to optimize host defence.


Assuntos
Microbioma Gastrointestinal/imunologia , Fígado/imunologia , Fígado/microbiologia , Simbiose/imunologia , Animais , Bactérias/imunologia , Bactérias/isolamento & purificação , Separação Celular , Quimiocina CXCL9/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Feminino , Humanos , Células de Kupffer/citologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/irrigação sanguínea , Fígado/citologia , Linfócitos/imunologia , Masculino , Camundongos , Modelos Imunológicos , Imagem Molecular , Células Mieloides/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Simbiose/genética , Transcriptoma
14.
Proc Natl Acad Sci U S A ; 117(52): 33455-33465, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376221

RESUMO

The diverse composition of mammalian tissues poses challenges for understanding the cell-cell interactions required for organ homeostasis and how spatial relationships are perturbed during disease. Existing methods such as single-cell genomics, lacking a spatial context, and traditional immunofluorescence, capturing only two to six molecular features, cannot resolve these issues. Imaging technologies have been developed to address these problems, but each possesses limitations that constrain widespread use. Here we report a method that overcomes major impediments to highly multiplex tissue imaging. "Iterative bleaching extends multiplexity" (IBEX) uses an iterative staining and chemical bleaching method to enable high-resolution imaging of >65 parameters in the same tissue section without physical degradation. IBEX can be employed with various types of conventional microscopes and permits use of both commercially available and user-generated antibodies in an "open" system to allow easy adjustment of staining panels based on ongoing marker discovery efforts. We show how IBEX can also be used with amplified staining methods for imaging strongly fixed tissues with limited epitope retention and with oligonucleotide-based staining, allowing potential cross-referencing between flow cytometry, cellular indexing of transcriptomes and epitopes by sequencing, and IBEX analysis of the same tissue. To facilitate data processing, we provide an open-source platform for automated registration of iterative images. IBEX thus represents a technology that can be rapidly integrated into most current laboratory workflows to achieve high-content imaging to reveal the complex cellular landscape of diverse organs and tissues.


Assuntos
Células/metabolismo , Imagem Óptica/métodos , Animais , Corantes Fluorescentes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imunização , Linfonodos/diagnóstico por imagem , Camundongos , Especificidade de Órgãos , Fenótipo
15.
bioRxiv ; 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32839775

RESUMO

Detailed knowledge about the dynamics of SARS-CoV-2 infection is important for unraveling the viral and host factors that contribute to COVID-19 pathogenesis. Old-World nonhuman primates recapitulate mild-moderate COVID-19 cases, thereby serving as important pathogenesis models. We compared African green monkeys inoculated with SARS-CoV-2 or inactivated virus to study the dynamics of virus replication throughout the respiratory tract. RNA sequencing of single cells from the lungs and mediastinal lymph nodes allowed a high-resolution analysis of virus replication and host responses over time. Viral replication was mainly localized to the lower respiratory tract, with evidence of replication in the pneumocytes. Macrophages were found to play a role in initiating a pro-inflammatory state in the lungs, while also interacting with infected pneumocytes. Our dataset provides a detailed view of changes in host and virus replication dynamics over the course of mild COVID-19 and serves as a valuable resource to identify therapeutic targets.

16.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546624

RESUMO

Outbreaks of filoviruses, such as those caused by the Ebola (EBOV) and Marburg (MARV) virus, are difficult to detect and control. The initial clinical symptoms of these diseases are nonspecific and can mimic other endemic pathogens. This makes confident diagnosis based on clinical symptoms alone impossible. Molecular diagnostics for these diseases that rely on the detection of viral RNA in the blood are only effective after significant disease progression. As an approach to identify these infections earlier in the disease course, we tested the effectiveness of viral RNA detection combined with an assessment of sentinel host mRNAs that are upregulated following filovirus infection. RNAseq analysis of EBOV-infected nonhuman primates identified host RNAs that are upregulated at early stages of infection. NanoString probes that recognized these host-response RNAs were combined with probes that recognized viral RNA and were used to classify viral infection both prior to viremia and postviremia. This approach was highly successful at identifying samples from nonhuman primate subjects and correctly distinguished the causative agent in a previremic stage in 10 EBOV and 5 MARV samples. This work suggests that unified host response/viral fingerprint assays can enable diagnosis of disease earlier than testing for viral nucleic acid alone, which could decrease transmission events and increase therapeutic effectiveness.IMPORTANCE Current molecular tests that identify infection with high-consequence viruses such as Ebola virus and Marburg virus are based on the detection of virus material in the blood. These viruses do not undergo significant early replication in the blood and, instead, replicate in organs such as the liver and spleen. Thus, virus begins to accumulate in the blood only after significant replication has already occurred in those organs, making viremia an indicator of infection only after initial stages have become established. Here, we show that a multianalyte assay can correctly identify the infectious agent in nonhuman primates (NHPs) prior to viremia through tracking host infection response transcripts. This illustrates that a single-tube, sample-to-answer format assay could be used to advance the time at which the type of infection can be determined and thereby improve outcomes.


Assuntos
Genoma Viral , Doença pelo Vírus Ebola/diagnóstico , Interações Hospedeiro-Patógeno/genética , Doença do Vírus de Marburg/diagnóstico , RNA Viral/isolamento & purificação , Transcriptoma , Animais , Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Humanos , Macaca , Doença do Vírus de Marburg/virologia , Marburgvirus/genética , Análise em Microsséries , Proteínas Virais/sangue , Proteínas Virais/genética , Viremia
17.
Dev Biol ; 460(2): 139-154, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816285

RESUMO

Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Lytechinus/embriologia , Transcriptoma/fisiologia , Animais , Strongylocentrotus purpuratus/embriologia
18.
J Neuroinflammation ; 16(1): 229, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31739796

RESUMO

BACKGROUND: La Crosse virus (LACV) is the leading cause of pediatric arboviral encephalitis in the USA. LACV encephalitis can result in learning and memory deficits, which may be due to infection and apoptosis of neurons in the brain. Despite neurons being the primary cell infected in the brain by LACV, little is known about neuronal responses to infection. METHODS: Human cerebral organoids (COs), which contain a spectrum of developing neurons, were used to examine neuronal responses to LACV. Plaque assay and quantitative reverse transcription (qRT) PCR were used to determine the susceptibility of COs to LACV infection. Immunohistochemistry, flow cytometry, and single-cell transcriptomics were used to determine specific neuronal subpopulation responses to the virus. RESULTS: Overall, LACV readily infected COs causing reduced cell viability and increased apoptosis. However, it was determined that neurons at different stages of development had distinct responses to LACV. Both neural progenitors and committed neurons were infected with LACV, however, committed neurons underwent apoptosis at a higher rate. Transcriptomic analysis showed that committed neurons expressed fewer interferon (IFN)-stimulated genes (ISGs) and genes involved IFN signaling in response to infection compared to neural progenitors. Furthermore, induction of interferon signaling in LACV-infected COs by application of recombinant IFN enhanced cell viability. CONCLUSIONS: These findings indicate that neuronal maturation increases the susceptibility of neurons to LACV-induced apoptosis. This susceptibility is likely due, at least in part, to mature neurons being less responsive to virus-induced IFN as evidenced by their poor ISG response to LACV. Furthermore, exogenous administration of recombinant IFN to LACV COs rescued cellular viability suggesting that increased IFN signaling is overall protective in this complex neural tissue. Together these findings indicate that induction of IFN signaling in developing neurons is an important deciding factor in virus-induced cell death.


Assuntos
Encefalite da Califórnia/imunologia , Interferon Tipo I/imunologia , Células-Tronco Neurais/virologia , Neurônios/virologia , Apoptose/fisiologia , Células Cultivadas , Encefalite da Califórnia/patologia , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais/patologia , Neurônios/citologia , Neurônios/patologia , Organoides
19.
J Infect Dis ; 218(suppl_5): S486-S495, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30476250

RESUMO

The domestic ferret is a uniformly lethal model of infection for 3 species of Ebolavirus known to be pathogenic in humans. Reagents to systematically analyze the ferret host response to infection are lacking; however, the recent publication of a draft ferret genome has opened the potential for transcriptional analysis of ferret models of disease. In this work, we present comparative analysis of longitudinally sampled blood taken from ferrets and nonhuman primates infected with lethal doses of the Makona variant of Zaire ebolavirus. Strong induction of proinflammatory and prothrombotic signaling programs were present in both ferrets and nonhuman primates, and both transcriptomes were similar to previously published datasets of fatal cases of human Ebola virus infection.


Assuntos
Furões/genética , Doença pelo Vírus Ebola/genética , Macaca mulatta/genética , Transcriptoma , Animais , Citocinas/genética , Modelos Animais de Doenças , Feminino , Humanos
20.
J Infect Dis ; 218(suppl_5): S508-S518, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29986035

RESUMO

Differences in T-cell phenotype, particularly the expression of markers of T-cell homeostasis, have been observed in fatal and nonfatal Ebola virus disease (EVD). However, the relationship between these markers with T-cell function and virus clearance during EVD is poorly understood. To gain biological insight into the role of T cells during EVD, combined transcriptomics and T-cell receptor sequencing was used to profile blood samples from fatal and nonfatal EVD patients from the recent West African EVD epidemic. Fatal EVD was characterized by strong T-cell activation and increased abundance of T-cell inhibitory molecules. However, the early T-cell response was oligoclonal and did not result in viral clearance. In contrast, survivors mounted highly diverse T-cell responses, maintained low levels of T-cell inhibitors, and cleared Ebola virus. Our findings highlight the importance of T-cell immunity in surviving EVD and strengthen the foundation for further research on targeting of the dendritic cell-T cell interface for postexposure immunotherapy.


Assuntos
Doença pelo Vírus Ebola/imunologia , Homeostase , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/imunologia , Biomarcadores , Estudos Transversais , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/mortalidade , Humanos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA