Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 174(2): 267-273, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27107884

RESUMO

Increased ingestion of aluminum (Al) can lead to its accumulation in the human body, especially in people with kidney problems. Al is also associated with several nervous diseases and its negative influence on embryo development during pregnancy has been proven in animal models. Hibiscus sabdariffa L. petals are widely used alone or in fruit tea formulas, which are recommended for drinking during pregnancy instead of tea. Its petals can contain similar and even higher amounts of Al as tea, which is a known Al accumulator. Our research investigated whether the regular intake of H. sabdariffa infusion leads to increased burden of Al. Sixteen days of ingestion of H. sabdariffa infusion (c Al = 0.5 mg.L-1) led to increased but unbalanced levels (15-86 µg L-1) of Al in urine compared to a period when the infusion was not ingested. The highest amounts of Al excreted were observed every third day during the ingestion. Mild health problems, such as nausea and dizziness (which could be related to plant properties) were reported by more sensitive volunteers.Our results suggest that the tea infusion from H. sabdariffa petals increases body burden of Al and, therefore, sensitive individuals as pregnant women and people with kidney problems should be cautious with excessive consumption of hibiscus infusion or fruit teas containing this plant. However, further study including more individuals is needed to fully confirm our preliminary results.


Assuntos
Alumínio/urina , Flores/química , Hibiscus/química , Extratos Vegetais/administração & dosagem , Adulto , Feminino , Humanos , Masculino , Extratos Vegetais/química
2.
Anal Bioanal Chem ; 397(2): 433-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19795109

RESUMO

Ethylene glycol monobutyl ether (EGBE), an industrial solvent, is absorbed by the body not only by inhalation but also by dermal absorption (liquid or vapour). EGBE is metabolized to butoxyacetic acid (BAA). Pooled freeze-dried urine candidate reference material (RM) was prepared from urine obtained from persons occupationally exposed to EGBE. This material has the advantage of containing butoxyacetic acid in both the free and conjugated (glutamine and glycine) forms, as found in native urine. In all GC method modifications used, acid hydrolysis was used to release BAA from its conjugated form. The amount of butoxyacetic acid in homogeneity and stability testing was measured by GC after derivatisation with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. Detection was by MS in EI mode, in the authors' laboratory. For interlaboratory comparison of the reference material GC methods with MS, FID, and ECD were used. Different extraction solvents (dichloromethane-isopropanol 2:1, ethyl acetate, or dichloromethane) and derivatisation reagents (trimethylsilyldiazomethane, N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide) were used. Using ANOVA (at the statistical level alpha = 0.05) no changes were found in the concentration of butoxyacetic acid during fifteen month isochronous stability testing, or in homogeneity testing. The uncertainty contributions were u (h) = 8.8 mg L(-1) and u (s) = 6.5 mg L(-1). The concentration of butoxyacetic acid in freeze-dried urine RM was evaluated from the results of eight laboratory data sets within an interlaboratory comparison by use of the interactive statistical software IPECA. The contribution to total uncertainty derived from interlaboratory comparison was u (i) = 12.7 mg L(-1). The reference value (c = 273 +/- 33 mg L(-1)) is an unweighted arithmetic average of accepted results. The value is traceable to the pure butoxyacetic acid (98% w/w; Acros Organic #257760010) used as calibrant. The uncertainty given is combined expanded uncertainty derived from the results from interlaboratory comparison, and from homogeneity and stability tests (k = 2). The reference material will be used to verify method performance in the biological monitoring of occupational exposure to EGBE.


Assuntos
Etilenoglicóis/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glicolatos/normas , Glicolatos/urina , Humanos , Exposição Ocupacional , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA