Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Med Res Arch ; 12(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38770116

RESUMO

Background: Obstructive sleep apnea (OSA) has been linked to cytokine-mediated chronic inflammatory states. Continuous positive airway pressure (CPAP) is an established therapy for OSA, but its effects on inflammation remain unclear. A recent study from our group identified soluble cytokine receptors altered in OSA patients and modified by CPAP adherence. However, the upstream regulatory pathways responsible for these shifts in proinflammatory cascades with OSA and CPAP therapy remained unknown. Accordingly, this study mapped OSA and CPAP-modulated soluble cytokine receptors to specific microRNAs and then tested the hypothesis that OSA and CPAP adherence shift cytokine-related microRNA expression profiles. Study Design: Plasma samples were collected from patients with OSA (n=50) at baseline and approximately 90 days after CPAP initiation and compared to referent control subjects (n=10). Patients with OSA were further divided into cohorts defined by adherence vs nonadherence to CPAP therapy. The microRNAs that mapped to soluble cytokine receptors of interest were subjected to quantitative polymerase chain reaction. Results: At baseline, increased hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-195-5p, hsa-miR-424-5p, hsa-miR-223-3p, and hsa-miR-223-5p were observed in patients with OSA compared to controls (p<0.05). In CPAP adherent patients (n=22), hsa-miR233-3p and hsa-miR233-5p decreased at follow-up (p<0.05) whereas there was no change in miR levels from baseline in non-adherent CPAP patients (n=28). The miRs hsa-miR233-3p and hsa-miR233-5p mapped to both proinflammatory and innate immunity activation; the inflammasome. Conclusion: A specific set of microRNAs, including hsa-miR233-3p and hsa-miR233-5p, may serve as a marker of inflammatory responses in patients with OSA, and be used to assess attenuation of inflammasome activation by CPAP.

2.
ACS Appl Bio Mater ; 7(5): 3041-3049, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38661721

RESUMO

Drug-coated balloon (DCB) therapy is a promising endovascular treatment for obstructive arterial disease. The goal of DCB therapy is restoration of lumen patency in a stenotic vessel, whereby balloon deployment both mechanically compresses the offending lesion and locally delivers an antiproliferative drug, most commonly paclitaxel (PTX) or derivative compounds, to the arterial wall. Favorable long-term outcomes of DCB therapy thus require predictable and adequate PTX delivery, a process facilitated by coating excipients that promotes rapid drug transfer during the inflation period. While a variety of excipients have been considered in DCB design, there is a lack of understanding about the coating-specific biophysical determinants of essential device function, namely, acute drug transfer. We consider two hydrophilic excipients for PTX delivery, urea (UR) and poly(ethylene glycol) (PEG), and examine how compositional and preparational variables in the balloon surface spray-coating process impact resultant coating microstructure and in turn acute PTX transfer to the arterial wall. Specifically, we use scanning electron image analyses to quantify how coating microstructure is altered by excipient solid content and balloon-to-nozzle spray distance during the coating procedure and correlate obtained microstructural descriptors of coating aggregation to the efficiency of acute PTX transfer in a one-dimensional ex vivo model of DCB deployment. Experimental results suggest that despite the qualitatively different coating surface microstructures and apparent PTX transfer mechanisms exhibited with these excipients, the drug delivery efficiency is generally enhanced by coating aggregation on the balloon surface. We illustrate this microstructure-function relation with a finite element-based computational model of DCB deployment, which along with our experimental findings suggests a general design principle to increase drug delivery efficiency across a broad range of DCB designs.


Assuntos
Materiais Revestidos Biocompatíveis , Interações Hidrofóbicas e Hidrofílicas , Paclitaxel , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Polietilenoglicóis/química , Tamanho da Partícula , Humanos , Ureia/química , Angioplastia com Balão , Sistemas de Liberação de Medicamentos , Propriedades de Superfície
3.
PLoS One ; 19(2): e0292243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306359

RESUMO

BACKGROUND: Standardized exercise protocols have been shown to improve overall cardiovascular fitness, but direct effects on left ventricular (LV) function, particularly diastolic function and relation to post-transcriptional molecular pathways (microRNAs (miRs)) are poorly understood. This project tested the central hypothesis that adaptive LV remodeling resulting from a large animal exercise training protocol, would be directly associated with specific miRs responsible for regulating pathways relevant to LV myocardial stiffness and geometry. METHODS AND RESULTS: Pigs (n = 9; 25 Kg) underwent a 4 week exercise training protocol (10 degrees elevation, 2.5 mph, 10 min, 5 days/week) whereby LV chamber stiffness (KC) and regional myocardial stiffness (rKm) were measured by Doppler/speckle tracking echocardiography. Age and weight matched non-exercise pigs (n = 6) served as controls. LV KC fell by approximately 50% and rKm by 30% following exercise (both p < 0.05). Using an 84 miR array, 34 (40%) miRs changed with exercise, whereby 8 of the changed miRs (miR-19a, miR-22, miR-30e, miR-99a, miR-142, miR-144, miR-199a, and miR-497) were correlated to the change in KC (r ≥ 0.5 p < 0.05) and mapped to matrix and calcium handling processes. Additionally, miR-22 and miR-30e decreased with exercise and mapped to a localized inflammatory process, the inflammasome (NLRP-3, whereby a 2-fold decrease in NLRP-3 mRNA occurred with exercise (p < 0.05). CONCLUSION: Chronic exercise reduced LV chamber and myocardial stiffness and was correlated to miRs that map to myocardial relaxation processes as well as local inflammatory pathways. These unique findings set the stage for utilization of myocardial miR profiling to identify underlying mechanisms by which exercise causes changes in LV myocardial structure and function.


Assuntos
Ventrículos do Coração , MicroRNAs , Suínos , Animais , Função Ventricular Esquerda , Diástole , Miocárdio , MicroRNAs/genética
4.
Biochem Pharmacol ; 219: 115914, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956895

RESUMO

An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.


Assuntos
Insuficiência Cardíaca , Neoplasias , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Remodelação Ventricular
5.
J Appl Physiol (1985) ; 135(2): 405-420, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318987

RESUMO

Myocardial infarction (MI) is often complicated by left ventricular (LV) remodeling and heart failure. We evaluated the feasibility of a multimodality imaging approach to guide delivery of an imageable hydrogel and assessed LV functional changes with therapy. Yorkshire pigs underwent surgical occlusions of branches of the left anterior descending and/or circumflex artery to create an anterolateral MI. We evaluated the hemodynamic and mechanical effects of intramyocardial delivery of an imageable hydrogel in the central infarct area (Hydrogel group, n = 8) and a Control group (n = 5) early post-MI. LV and aortic pressure and ECG were measured and contrast cineCT angiography was performed at baseline, 60 min post-MI, and 90 min post-hydrogel delivery. LV hemodynamic indices, pressure-volume measures, and normalized regional and global strains were measured and compared. Both Control and Hydrogel groups demonstrated a decline in heart rate, LV pressure, stroke volume, ejection fraction, and pressure-volume loop area, and an increase in myocardial performance (Tei) index and supply/demand (S/D) ratio. After hydrogel delivery, Tei index and S/D ratio were reduced to baseline levels, diastolic and systolic functional indices either stabilized or improved, and radial strain and circumferential strain increased significantly in the MI regions (ENrr: +52.7%, ENcc: +44.1%). However, the Control group demonstrated a progressive decline in all functional indices to levels significantly below those of Hydrogel group. Thus, acute intramyocardial delivery of a novel imageable hydrogel to MI region resulted in rapid stabilization or improvement in LV hemodynamics and function.NEW & NOTEWORTHY Our study demonstrates that contrast cineCT imaging can be used to evaluate the acute effects of intramyocardial delivery of a therapeutic hydrogel to the central MI region early post MI, which resulted in a rapid stabilization of LV hemodynamics and improvement in regional and global LV function.


Assuntos
Hidrogéis , Infarto do Miocárdio , Suínos , Animais , Hidrogéis/farmacologia , Medicina de Precisão , Miocárdio , Função Ventricular Esquerda , Remodelação Ventricular/fisiologia
6.
Am J Physiol Heart Circ Physiol ; 324(1): H85-H99, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459450

RESUMO

Reversible physiological cardiac hypertrophy of the maternal heart occurs during pregnancy and involves extracellular matrix (ECM) remodeling. Previous mouse studies revealed that changes in ECM molecules accompany functional changes in the left ventricle (LV) during late pregnancy and postpartum. We evaluated the effect of global Timp4 deletion in female mice on LV functional parameters and ECM molecules during pregnancy and the postpartum period. Heart weights normalized to tibia lengths were increased in Timp4 knockout (Timp4 KO) virgin, pregnant, and postpartum day 2 mice compared with wild types. Serial echocardiography performed on pregnancy days 10, 12, and 18 and postpartum days (ppds) 2, 7, 14, 21, and 28 revealed that both wild-type and Timp4 KO mice increased end systolic and end diastolic volumes (ESV, EDV) by mid to late pregnancy compared with virgins, with EDV changes persisting through the postpartum period. When compared with wild types, Timp4 KO mice exhibited higher ejection fractions in virgins, at pregnancy days 10 and 18 and ppd2 and ppd14. High-molecular weight forms of COL1A1 and COL3A1 proteins in LV were greater in Timp4 KO virgins, and COL1A1 was higher in late pregnancy and on ppd2 compared with wild types. With exceptions, Timp4 KO mice during late pregnancy and the early postpartum period were able to maintain stroke volume similar to wild-type mice through increased ejection fraction. Although TIMP4 deletion in females exhibited altered ECM molecules, it did not adversely affect cardiac function during first pregnancies and lactation.NEW & NOTEWORTHY Pregnancy and lactation increase volume load on the heart. Defects in cardiac remodeling during pregnancy and postpartum can result in peripartum cardiomyopathy. TIMPs participate in cardiac remodeling. The present study reports the cardiac function in Timp4 knockout adult female mice during pregnancy and lactation. Timp4 knockout females at many time points have higher ejection fraction to maintain stroke volume. Global deletion of Timp4 was not detrimental to maternal heart function during first pregnancies and lactation.


Assuntos
Coração , Inibidores Teciduais de Metaloproteinases , Remodelação Ventricular , Animais , Feminino , Camundongos , Gravidez , Coração/crescimento & desenvolvimento , Coração/fisiologia , Camundongos Knockout , Período Pós-Parto/genética , Remodelação Ventricular/genética , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Volume Sistólico/genética , Volume Sistólico/fisiologia , Inibidor Tecidual 4 de Metaloproteinase
7.
J Cardiovasc Transl Res ; 16(1): 155-165, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35697979

RESUMO

Following myocardial infarction (MI), maladaptive upregulation of matrix metalloproteinase (MMP) alters extracellular matrix leading to cardiac remodeling. Intramyocardial hydrogel delivery provides a vehicle for local delivery of MMP tissue inhibitors (rTIMP-3) for MMP activity modulation. We evaluated swine 10-14 days following MI randomized to intramyocardial delivery of saline, degradable hyaluronic acid (HA) hydrogel, or rTIMP-3 releasing hydrogel with an MMP-targeted radiotracer (99mTc-RP805), 201Tl, and CT. Significant left ventricle (LV) wall thinning, increased wall stress, reduced circumferential wall strain occurred in the MI region of MI-Saline group along with left atrial (LA) dilation, while these changes were modulated in both hydrogel groups. 99mTc-RP805 activity increased twofold in MI-Saline group and attenuated in hydrogel animals. Infarct size significantly reduced only in rTIMP-3 hydrogel group. Hybrid SPECT/CT imaging demonstrated a therapeutic benefit of intramyocardial delivery of hydrogels post-MI and reduced remodeling of LA and LV in association with a reduction in MMP activation.


Assuntos
Hidrogéis , Infarto do Miocárdio , Animais , Hidrogéis/uso terapêutico , Metaloproteinases da Matriz/uso terapêutico , Miocárdio , Suínos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Remodelação Ventricular/fisiologia
8.
BMC Med Inform Decis Mak ; 22(1): 282, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316772

RESUMO

BACKGROUND: Cardiac Resynchronization Therapy (CRT) is a widely used, device-based therapy for patients with left ventricle (LV) failure. Unfortunately, many patients do not benefit from CRT, so there is potential value in identifying this group of non-responders before CRT implementation. Past studies suggest that predicting CRT response will require diverse variables, including demographic, biomarker, and LV function data. Accordingly, the objective of this study was to integrate diverse variable types into a machine learning algorithm for predicting individual patient responses to CRT. METHODS: We built an ensemble classification algorithm using previously acquired data from the SMART-AV CRT clinical trial (n = 794 patients). We used five-fold stratified cross-validation on 80% of the patients (n = 635) to train the model with variables collected at 0 months (before initiating CRT), and the remaining 20% of the patients (n = 159) were used as a hold-out test set for model validation. To improve model interpretability, we quantified feature importance values using SHapley Additive exPlanations (SHAP) analysis and used Local Interpretable Model-agnostic Explanations (LIME) to explain patient-specific predictions. RESULTS: Our classification algorithm incorporated 26 patient demographic and medical history variables, 12 biomarker variables, and 18 LV functional variables, which yielded correct prediction of CRT response in 71% of patients. Additional patient stratification to identify the subgroups with the highest or lowest likelihood of response showed 96% accuracy with 22 correct predictions out of 23 patients in the highest and lowest responder groups. CONCLUSION: Computationally integrating general patient characteristics, comorbidities, therapy history, circulating biomarkers, and LV function data available before CRT intervention can improve the prediction of individual patient responses.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Humanos , Biomarcadores , Insuficiência Cardíaca/terapia , Aprendizado de Máquina , Resultado do Tratamento , Função Ventricular Esquerda/fisiologia , Ensaios Clínicos como Assunto
11.
Am J Physiol Heart Circ Physiol ; 322(5): H798-H805, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275763

RESUMO

Arterial hypertension can lead to structural changes within the heart including left ventricular hypertrophy (LVH) and eventually heart failure with preserved ejection fraction (HFpEF). The initial diagnosis of HFpEF is costly and generally based on later stage remodeling; thus, improved predictive diagnostic tools offer potential clinical benefit. Recent work has shown predictive value of multibiomarker plasma panels for the classification of patients with LVH and HFpEF. We hypothesized that machine learning algorithms could substantially improve the predictive value of circulating plasma biomarkers by leveraging more sophisticated statistical approaches. In this work, we developed an ensemble classification algorithm for the diagnosis of HFpEF within a population of 480 individuals including patients with HFpEF, patients with LVH, and referent control patients. Algorithms showed strong diagnostic performance with receiver-operating-characteristic curve (ROC) areas of 0.92 for identifying patients with LVH and 0.90 for identifying patients with HFpEF using demographic information, plasma biomarkers related to extracellular matrix remodeling, and echocardiogram data. More impressively, the ensemble algorithm produced an ROC area of 0.88 for HFpEF diagnosis using only demographic and plasma panel data. Our findings demonstrate that machine learning-based classification algorithms show promise as a noninvasive diagnostic tool for HFpEF, while also suggesting priority biomarkers for future mechanistic studies to elucidate more specific regulatory roles.NEW & NOTEWORTHY Machine learning algorithms correctly classified patients with heart failure with preserved ejection fraction with over 90% area under receiver-operating-characteristic curves. Classifications using multidomain features (demographics and circulating biomarkers and echo-based ventricle metrics) proved more accurate than previous studies using single-domain features alone. Excitingly, HFpEF diagnoses were generally accurate even without echo-based measurements, demonstrating that such algorithms could provide an early screening tool using blood-based measurements before sophisticated imaging.


Assuntos
Insuficiência Cardíaca , Biomarcadores , Humanos , Hipertrofia Ventricular Esquerda , Aprendizado de Máquina , Volume Sistólico , Função Ventricular Esquerda
12.
Heart Rhythm ; 19(5): 847-855, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35066183

RESUMO

BACKGROUND: Left ventricular (LV) remodeling following a myocardial infarction (MI) is associated with new-onset atrial fibrillation (AF). LV remodeling post-MI is characterized by regional changes in matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), causing extracellular matrix (ECM) remodeling. OBJECTIVE: The purpose of this study was to test the hypothesis that a shift in regional atrial MMP activity, MMP/TIMP expression, and ECM remodeling occurs post-MI, which cause increased vulnerability to AF. METHODS: MI was induced in pigs (weight 25 kg; coronary ligation; n = 9). At approximately 14 days post-MI, an atrial electrical stimulation protocol was performed, after which an MMP radiotracer was infused, MMP/TIMP mRNA profiling performed, and ECM collagen assessed by histochemistry. An additional 7 non-MI pigs served as controls. RESULTS: AF could be induced in 89% (8/9) of the post-MI pigs but none of the controls. MMP activity (MMP radiotracer uptake) increased by approximately 2-fold in most atrial regions post-MI, whereas fibrillar collagen content was unchanged or actually reduced in right atrial regions and increased in left atrial regions. MMP/TIMP profiles revealed a heterogeneous pattern from the left atrial appendage to right atrial regions. CONCLUSION: AF vulnerability early post-MI was associated with a heterogeneous pattern of atrial ECM remodeling, detectable by noninvasive molecular imaging. Detection of early atrial MMP activation post-MI may help define the myocardial substrate underlying AF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Infarto do Miocárdio , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Metaloproteinases da Matriz , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Suínos , Remodelação Ventricular/fisiologia
13.
Am J Physiol Heart Circ Physiol ; 321(6): H1056-H1073, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623181

RESUMO

Despite significant improvements in reperfusion strategies, acute coronary syndromes all too often culminate in a myocardial infarction (MI). The consequent MI can, in turn, lead to remodeling of the left ventricle (LV), the development of LV dysfunction, and ultimately progression to heart failure (HF). Accordingly, an improved understanding of the underlying mechanisms of MI remodeling and progression to HF is necessary. One common approach to examine MI pathology is with murine models that recapitulate components of the clinical context of acute coronary syndrome and subsequent MI. We evaluated the different approaches used to produce MI in mouse models and identified opportunities to consolidate methods, recognizing that reperfused and nonreperfused MI yield different responses. The overall goal in compiling this consensus statement is to unify best practices regarding mouse MI models to improve interpretation and allow comparative examination across studies and laboratories. These guidelines will help to establish rigor and reproducibility and provide increased potential for clinical translation.


Assuntos
Pesquisa Biomédica/normas , Insuficiência Cardíaca , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Consenso , Modelos Animais de Doenças , Progressão da Doença , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/terapia , Reperfusão , Fatores Sexuais , Especificidade da Espécie
14.
Front Cardiovasc Med ; 8: 705100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568449

RESUMO

There is a critical need for interventions to control the development and remodeling of scar tissue after myocardial infarction. A significant hurdle to fibrosis-related therapy is presented by the complex spatial needs of the infarcted ventricle, namely that collagenous buildup is beneficial in the ischemic zone but detrimental in the border and remote zones. As a new, alternative approach, we present a case to develop self-adapting, mechano-sensitive drug targets in order to leverage local, microenvironmental mechanics to modulate a therapy's pharmacologic effect. Such approaches could provide self-tuning control to either promote fibrosis or reduce fibrosis only when and where it is beneficial to do so.

15.
Am J Physiol Heart Circ Physiol ; 321(5): H976-H984, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559578

RESUMO

Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and accompanied by abnormal extracellular matrix (ECM) accumulation. The E3 ubiquitin ligase WWP1 is a fundamental determinant ECM turnover. We tested the hypothesis that genetic ablation of Wwp1 would alter the progression of LVPO-induced HFpEF. LV echocardiography in mice with global Wwp1 deletion (n = 23; Wwp1-/-) was performed at 12 wk of age (baseline) and then at 2 and 4 wk following LVPO (transverse aortic banding) or surgery without LVPO induction. Age-matched wild-type mice (Wwp1+/+; n = 23) underwent identical protocols. LV EF remained constant and unchanged with LVPO and LV mass increased in both groups but was lower in the Wwp1-/- mice. With LVPO, the E/A ratio, an index of LV filling, was 3.97 ± 0.46 in Wwp1+/+ but was 1.73 ± 0.19 in the Wwp1-/- group (P < 0.05). At the transcriptional level, mRNA for fibrillar collagens (types I and III) decreased by approximately 50% in Wwp1-/- compared with the Wwp1+/+ group at 4 wk post-LVPO (P < 0.05) and was paralleled by a similar difference in LV fibrillar collagen content as measured by histochemistry. Moreover, mRNA levels for determinants favoring ECM accumulation, such as transforming growth factor (TGF), increased with LVPO, but were lower in the Wwp1-/- group. The absence of Wwp1 reduced the development of left ventricular hypertrophy and subsequent progression to HFpEF. Modulating the WWP1 pathway could be a therapeutic target to alter the natural history of HFpEF.NEW & NOTEWORTHY Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and is accompanied by abnormal extracellular matrix (ECM) accumulation. It is now recognized that the ECM is a dynamic entity that is regulated at multiple post-transcriptional levels, including the E3 ubiquitin ligases, such as WWP1. In the present study, WWP1 deletion in the context of an LVPO stimulus reduced functional indices of HFpEF progression and determinants of ECM remodeling.


Assuntos
Insuficiência Cardíaca/enzimologia , Ventrículos do Coração/enzimologia , Hipertrofia Ventricular Esquerda/enzimologia , Ubiquitina-Proteína Ligases/deficiência , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Diástole , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Deleção de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
16.
Int Heart J ; 62(5): 1096-1105, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34544982

RESUMO

While cardiac imaging has improved the diagnosis and risk assessment for cardiac sarcoidosis (CS), treatment regimens have consisted of generalized heart failure therapies and non-specific anti-inflammatory regimens. The overall goal of this study was to perform high-sensitivity plasma profiling of specific inflammatory pathways in patients with sarcoidosis and with CS.Specific inflammatory/proteolytic cascades were upregulated in sarcoidosis patients, and certain profiles emerged for CS patients.Plasma samples were collected from patients with biopsy-confirmed sarcoidosis undergoing F-18 fluorodeoxyglucose positron emission tomography (n = 47) and compared to those of referent control subjects (n = 6). Using a high-sensitivity, automated multiplex array, cytokines, soluble cytokine receptor profiles (an index of cytokine activation), as well as matrix metalloproteinase (MMP), and endogenous MMP inhibitors (TIMPs) were examined.The plasma tumor necrosis factor (TNF) and soluble TNF receptors sCD30 and sTNFRI were increased using sarcoidosis, and sTNFRII increased in CS patients (n = 18). The soluble interleukin sIL-2R and vascular endothelial growth factor receptors (sVEGFR2 and sVEGFR3) increased to the greatest degree in CS patients. When computed as a function of referent control values, the majority of soluble cytokine receptors increased in both sarcoidosis and CS groups. Plasma MMP-9 levels increased in sarcoidosis but not in the CS subset. Plasma TIMP levels declined in both groups.The findings from this study were the identification of increased activation of a cluster of soluble cytokine receptors, which augment not only inflammatory cell maturation but also transmigration in patients with sarcoidosis and patients with cardiac involvement.


Assuntos
Citocinas/metabolismo , Cardiopatias/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Sarcoidose/diagnóstico , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos de Avaliação como Assunto , Feminino , Fluordesoxiglucose F18/administração & dosagem , Cardiopatias/sangue , Cardiopatias/complicações , Cardiopatias/patologia , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Inflamação/metabolismo , Masculino , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Compostos Radiofarmacêuticos/administração & dosagem , Receptores de Interleucina-2/metabolismo , Receptores do Fator de Necrose Tumoral/sangue , Medição de Risco , Sarcoidose/sangue , Sarcoidose/complicações , Sarcoidose/patologia , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Heart Rhythm O2 ; 2(1): 37-45, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34113903

RESUMO

BACKGROUND: Atrial fibrillation (AF) is less common in African Americans (AA) than Caucasians (C) despite a higher prevalence of risk factors such as hypertension (HTN). OBJECTIVE: Test the hypothesis that differences in extracellular matrix (ECM) between AA and C in response to HTN might attenuate atrial enlargement and alter myocardial fibrosis. METHODS: ECM-related plasma biomarkers and echo data were collected from 326 C and 129 AA subjects with no history of AF, stratified by the presence of HTN, HTN with left ventricular hypertrophy (LVH), or HTN with LVH and heart failure with preserved ejection fraction (HFpEF). RESULTS: Left atrial size was significantly smaller and the extent of enlargement in the presence of HTN was less in AA despite similar ventricular relative wall thickness, echocardiographic measures of diastolic function, and 6 minute-walk-test. AA had significantly lower levels of collagen I telopeptide and higher levels of collagen I propeptide among all strata, suggesting unique collagen homeostasis. Matrix metalloproteinases (MMP) and tissue inhibitors of matrix metalloproteinase (TIMP) showed a distinctive response to HTN in AA, with significantly lower levels of MMP-2, MMP-3, and MMP-8 in AA with HTN and significantly lower levels of TIMP-1 and TIMP-3 in AA with HTN and AA with LVH. AA had significantly lower levels of NT-pro-BNP in all strata. CONCLUSION: This cross-sectional study demonstrates a racial disparity in ECM blood biomarkers and atrial remodeling in response to HTN and in the development of LVH and HFpEF that may partly help explain the decreased risk of AF in AA.

18.
Am J Physiol Heart Circ Physiol ; 321(1): H208-H213, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34114891

RESUMO

There is a lack of understanding in the cardiac remodeling field regarding the use of nonreperfused myocardial infarction (MI) and reperfused MI in animal models of MI. This Perspectives summarizes the consensus of the authors regarding how to select the optimum model for your experiments and is a part of ongoing efforts to establish rigor and reproducibility in cardiac physiology research.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Reperfusão Miocárdica , Animais , Modelos Animais de Doenças , Coração
20.
J Pharmacol Exp Ther ; 375(2): 296-307, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958629

RESUMO

Infarct expansion can occur after myocardial infarction (MI), which leads to adverse left ventricular (LV) remodeling and failure. An imbalance between matrix metalloproteinase (MMP) induction and tissue inhibitors of MMPs (TIMPs) can accelerate this process. Past studies have shown different biologic effects of TIMP-3, which may depend upon specific domains within the TIMP-3 molecule. This study tested the hypothesis that differential effects of direct myocardial injections of either a full-length recombinant TIMP-3 (F-TIMP-3) or a truncated form encompassing the N-terminal region (N-TIMP-3) could be identified post-MI. MI was induced in pigs that were randomized for MI injections (30 mg) and received targeted injections within the MI region of F-TIMP-3 (n = 8), N-TIMP-3 (n = 9), or saline injection (MI-only, n = 11). At 14 days post-MI, LV ejection fraction fell post-MI but remained higher in both TIMP-3 groups. Tumor necrosis factor and interleukin-10 mRNA increased by over 10-fold in the MI-only and N-TIMP-3 groups but were reduced with F-TIMP-3 at this post-MI time point. Direct MI injection of either a full-length or truncated form of TIMP-3 is sufficient to favorably alter the course of post-MI remodeling. The functional and differential relevance of TIMP-3 domains has been established in vivo since the TIMP-3 constructs demonstrated different MMP/cytokine expression profiles. These translational studies identify a unique and more specific therapeutic strategy to alter the course of LV remodeling and dysfunction after MI. SIGNIFICANCE STATEMENT: Using different formulations of tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), when injected into the myocardial infarction (MI) region, slowed the progression of indices of left ventricular (LV) failure, suggesting that the N terminus of TIMP-3 is sufficient to attenuate early adverse functional events post-MI. Injections of full-length recombinant TIMP-3, but not of the N-terminal region of TIMP-3, reduced relative indices of inflammation at the mRNA level, suggesting that the C-terminal region affects other biological pathways. These unique proof-of-concept studies demonstrate the feasibility of using recombinant small molecules to selectively interrupt adverse LV remodeling post-MI.


Assuntos
Infarto do Miocárdio/patologia , Fragmentos de Peptídeos/farmacologia , Inibidor Tecidual de Metaloproteinase-3/química , Remodelação Ventricular/efeitos dos fármacos , Sequência de Aminoácidos , Colágeno/genética , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Injeções , Metaloproteinases da Matriz/genética , Fragmentos de Peptídeos/química , Domínios Proteicos , RNA Mensageiro/genética , Inibidor Tecidual de Metaloproteinase-3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA