Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 33(4): 1055-1062, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30850735

RESUMO

Following the publication of this article, the authors noted that Dr Laura Fancello was not listed among the authors. The corrected author list is given below. Additionally, the following was not included in the author contribution statement: 'L.F. analyzed RNA sequencing data'.

2.
Leukemia ; 33(2): 319-332, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29930300

RESUMO

The R98S mutation in ribosomal protein L10 (RPL10 R98S) affects 8% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) cases, and was previously described to impair cellular proliferation. The current study reveals that RPL10 R98S cells accumulate reactive oxygen species which promotes mitochondrial dysfunction and reduced ATP levels, causing the proliferation defect. RPL10 R98S mutant leukemia cells can survive high oxidative stress levels via a specific increase of IRES-mediated translation of the anti-apoptotic factor B-cell lymphoma 2 (BCL-2), mediating BCL-2 protein overexpression. RPL10 R98S selective sensitivity to the clinically available Bcl-2 inhibitor Venetoclax (ABT-199) was supported by suppression of splenomegaly and the absence of human leukemia cells in the blood of T-ALL xenografted mice. These results shed new light on the oncogenic function of ribosomal mutations in cancer, provide a novel mechanism for BCL-2 upregulation in leukemia, and highlight BCL-2 inhibition as a novel therapeutic opportunity in RPL10 R98S defective T-ALL.


Assuntos
Sítios Internos de Entrada Ribossomal , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Animais , Regulação Leucêmica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína Ribossômica L10 , Proteínas Ribossômicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oxid Med Cell Longev ; 2017: 4064628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29129987

RESUMO

Amphotericin B (AmB) induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB's fungicidal activity in Saccharomyces cerevisiae, using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays. The nitric oxide synthase inhibitor L-NAME was used to interfere with nitric oxide radical production. L-NAME increased and accelerated AmB-induced accumulation of superoxide radicals, membrane permeabilization, and loss of proliferative capacity in S. cerevisiae. In contrast, the nitric oxide donor S-nitrosoglutathione inhibited AmB's action. Hence, superoxide radicals were important for AmB's fungicidal action, whereas nitric oxide radicals mediated tolerance towards AmB. Finally, also the human pathogens Candida albicans and Candida glabrata were more susceptible to AmB in the presence of L-NAME, pointing to the potential of AmB-L-NAME combination therapy to treat fungal infections.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida albicans/metabolismo , Candida glabrata/metabolismo , Óxido Nítrico/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Lipids Health Dis ; 16(1): 46, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28231800

RESUMO

BACKGROUND: Dietary intervention is the cornerstone of non-alcoholic steatohepatitis (NASH) treatment. However, histological evidence of its efficacy is limited and its impact on hepatic pathways involved in NASH is underreported. The efficacy of the angiotensin receptor type 1 blocker losartan is controversial because of varying results in a few animal and human studies. We evaluated the effect of dietary intervention versus losartan on NASH and associated systemic metabolic features in a representative mouse model. METHODS: Male C57BL/6 J mice with high fat-high sucrose diet (HF-HSD) induced NASH, obesity, insulin resistance and hypercholesterolemia were subjected to dietary intervention (switch from HF-HSD to normal chow diet (NCD)) (n = 9), continuation HF-HSD together with losartan (30 mg/kg/day) (n = 9) or continuation HF-HSD only (n = 9) for 8 weeks. 9 mice received NCD during the entire experiment (20 weeks). We assessed the systemic metabolic effects and performed a detailed hepatic histological and molecular profiling. A P-value of < 0.05, using the group with continuation of HF-HSD only as control, was considered as statistically significant. RESULTS: Dietary intervention normalized obesity, insulin resistance, and hypercholesterolemia (for all P < 0.001), and remarkably, completely reversed all histological features of pre-existent NASH (for all P < 0.001), including fibrosis measured by quantification of collagen proportional area (P < 0.01). At the hepatic molecular level, dietary intervention targeted fibrogenesis with a normalization of collagen type I alpha 1, transforming growth factor ß1, tissue inhibitor of metalloproteinase 1 mRNA levels (for all P < 0.01), lipid metabolism with a normalization of fatty acid translocase/CD36, fatty acid transport protein 5, fatty acid synthase mRNA levels (P < 0.05) and markers related to mitochondrial function with a normalization of hepatic ATP content (P < 0.05) together with sirtuin1 and uncoupling protein 2 mRNA levels (for both P < 0.001). Dietary intervention abolished p62 accumulation (P < 0.01), suggesting a restoration of autophagic flux. Losartan did not significantly affect obesity, insulin resistance, hypercholesterolemia or any histological NASH feature. CONCLUSIONS: Dietary intervention, and not losartan, completely restores the metabolic phenotype in a representative mouse model with pre-existent NASH, obesity, insulin resistance and hypercholesterolemia.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Losartan/farmacologia , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Obesidade/dietoterapia , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
5.
Metab Eng ; 43(Pt B): 187-197, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27847310

RESUMO

Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function, and whether this contributes to the peculiarity of tumor development versus neurodegeneration. We addressed this question by decoupling loss of SDH and complex I activity in cancer cells and neurons. We found that sole loss of SDH activity was not sufficient to recapitulate the metabolic phenotype of SDH mutant tumors, because it failed to decrease mitochondrial respiration and to activate reductive glutamine metabolism. These metabolic phenotypes were only induced upon the additional loss of complex I activity. Thus, we show that complex I function defines the metabolic differences between SDH mutation associated tumors and neurodegenerative diseases, which could open novel therapeutic options against both diseases.


Assuntos
Complexo I de Transporte de Elétrons , Mutação , Proteínas de Neoplasias , Neoplasias , Succinato Desidrogenase , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Neurônios/enzimologia , Neurônios/patologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
6.
Mech Ageing Dev ; 161(Pt B): 247-254, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491841

RESUMO

The plant-derived decapeptide OSIP108 increases tolerance of yeast and human cells to apoptosis-inducing agents, such as copper and cisplatin. We performed a whole amino acid scan of OSIP108 and conducted structure-activity relationship studies on the induction of cisplatin tolerance (CT) in yeast. The use of cisplatin as apoptosis-inducing trigger in this study should be considered as a tool to better understand the survival-promoting nature of OSIP108 and not for purposes related to anti-cancer treatment. We found that charged residues (Arg, His, Lys, Glu or Asp) or a Pro on positions 4-7 improved OSIP108 activity by 10% or more. The variant OSIP108[G7P] induced the most pronounced tolerance to toxic concentrations of copper and cisplatin in yeast and/or HepG2 cells. Both OSIP108 and OSIP108[G7P] were shown to internalize equally into HeLa cells, but at a higher rate than the inactive OSIP108[E10A], suggesting that the peptides can internalize into cells and that OSIP108 activity is dependent on subsequent intracellular interactions. In conclusion, our studies demonstrated that tolerance/survival-promoting properties of OSIP108 can be significantly improved by single amino acid substitutions, and that these properties are dependent on (an) intracellular target(s), yet to be determined.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacologia , Proteínas de Arabidopsis/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacocinética , Cisplatino/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Saccharomyces cerevisiae/metabolismo
7.
Clin Exp Dent Res ; 3(2): 69-76, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29744181

RESUMO

Porphyromonas gingivalis is a major pathogen involved in oral diseases such as periodontitis and peri-implantitis. Management of these diseases typically includes mechanical debridement of the colonized surfaces followed by application of antiseptics or antibiotics. Disadvantages associated with the use of antiseptics and the growing worldwide problem of antibiotic resistance have necessitated the search for alternative agents. In this study, the antibacterial and antibiofilm properties of AM404, an active metabolite of paracetamol, were tested against P. gingivalis and other bacterial pathogens. The activity of AM404 was tested against 10 bacteria, including both oral and nonoral human pathogens. The minimal inhibitory concentration (MIC) of AM404 was determined by measuring optical density (OD) values. The minimum biofilm inhibitory concentration (MBIC) was detected by crystal violet staining. The activity of structural analogs of AM404 was tested by MIC determinations. The effect of AM404 on P. gingivalis biofilms formed on titanium disks as a model for dental implants was evaluated by colony forming unit counting. Potential cytotoxicity of AM404 towards HEK-293 (human embryonic kidney cells), HepG2 (human hepatoma cells), IEC-6 (rat intestinal cells), and Panc-1 cells (pancreatic cancer cells) was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. To get more insight in the mode of action of AM404, we used the fluorescent dyes N-phenyl-1-napthylamine and SYTOX green to investigate outer and inner membrane damage of P. gingivalis induced by AM404, respectively. Of all tested pathogens, AM404 only inhibited growth and biofilm formation of P. gingivalis. Moreover, it showed potent activity against P. gingivalis biofilms formed on titanium surfaces. A structure-activity analysis demonstrated that the unsaturated carbon chain is essential for its antibacterial activity. Importantly, AM404 was not toxic towards the tested mammalian cells up to concentrations approaching 4× the MIC. Membrane damage assays using fluorescent probes N-phenyl-1-napthylamine and SYTOX green revealed that membrane permeabilization presumably is the primary antibacterial mode of action of AM404. Collectively, our results suggest that AM404 has the potential to be used for the development of new drugs specifically targeting P. gingivalis-related infections.

8.
Curr Protoc Mouse Biol ; 6(2): 185-200, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27248434

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world. It is associated with obesity and type 2 diabetes and represents a spectrum of histological abnormalities ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), which can further progress to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and liver failure. To gain insight into the pathogenesis and evaluate treatment options, mouse models of NAFLD/NASH are of utmost importance. There is a high phenotypical variety in the available mouse models, however, models that truly display the full spectrum of histopathological and metabolic features associated with human NASH are rare. In this review, we summarize the most important NAFLD/NASH mouse models that have been developed over the years and briefly highlight the pros and cons. Also, we illustrate the preclinical research in which these models have been used. © 2016 by John Wiley & Sons, Inc.


Assuntos
Modelos Animais de Doenças , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Animais , Humanos
9.
Curr Protoc Mouse Biol ; 6(2): 201-210, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27248435

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc.


Assuntos
Modelos Animais de Doenças , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Animais , Dieta da Carga de Carboidratos , Dieta Hiperlipídica , Humanos , Camundongos Endogâmicos C57BL
10.
Liver Int ; 36(12): 1848-1859, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27254774

RESUMO

BACKGROUND & AIMS: Increased prevalence of obesity is paralleled by an increase in non-alcoholic steatohepatitis (NASH). We previously found that the expression of ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) is enhanced in expanding adipose tissue. However, no information is available on a potential role in liver pathology. We studied the effect of ADAMTS5 deficiency on NASH in mice. METHODS: Wild-type (Adamts5+/+ ) and deficient (Adamts5-/- ) mice were kept on a standard- or high-fat diet (HFD) for 15 weeks. Alternatively, steatohepatitis was induced with methionine/choline-deficient (MCD) diet. RESULTS: HFD feeding resulted in comparable body weights for both genotypes, but Adamts5-/- mice had approximately 40% lower liver weight (P = 0.0004). In the Adamts5-/- mice, the HFD as well as the MCD diet consistently induced less NASH with less fibrosis. The deteriorating effect of ADAMTS5 on the liver during diet-induced obesity may be due, at least in part, to proteolytic cleavage of the matrix components syndecan-1 and versican, thereby enhancing hepatic triglyceride clearance from the circulation. Plasma lipid levels were elevated in obese Adamts5-/- mice. There was no clear effect of ADAMTS5 deficiency on glycaemia or glucose tolerance, whereas insulin sensitivity was somewhat improved. Furthermore, Adamts5-/- mice were protected from hepatic mitochondrial dysfunction, as indicated by increased mitochondrial respiratory chain complex activity, higher ATP levels and higher expression of antioxidant enzymes. CONCLUSIONS: Absence of ADAMTS5 preserves liver integrity in a diet-induced obesity model. Selective targeting of ADAMTS5 could provide a new therapeutic strategy for treatment/prevention of NASH.


Assuntos
Proteína ADAMTS5/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/fisiopatologia , Animais , Antioxidantes/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Resistência à Insulina , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Triglicerídeos/sangue
11.
PLoS One ; 11(5): e0155139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27167126

RESUMO

Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Carbazóis/química , Carbazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Bacterianos , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipossomos/química , Substâncias Macromoleculares/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Fosfolipídeos/metabolismo , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA , Staphylococcus aureus/genética , Fatores de Tempo
12.
PLoS One ; 10(8): e0132701, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26248029

RESUMO

Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel ß-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 ± 1.70 µM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 µM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 µM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Defensinas/farmacologia , Equinocandinas/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Caspofungina , Sinergismo Farmacológico , Humanos , Lipopeptídeos
13.
Gut ; 64(4): 673-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24917551

RESUMO

OBJECTIVE: No therapy for non-alcoholic steatohepatitis (NASH) has been approved so far. Roux-en-y gastric bypass (RYGB) is emerging as a therapeutic option, although its effect on NASH and related hepatic molecular pathways is unclear from human studies. We studied the effect of RYGB on pre-existent NASH and hepatic mitochondrial dysfunction-a key player in NASH pathogenesis-in a novel diet-induced mouse model nicely mimicking human disease. DESIGN: C57BL/6J mice were fed a high-fat high-sucrose diet (HF-HSD). RESULTS: HF-HSD led to early obesity, insulin resistance and hypercholesterolaemia. HF-HSD consistently induced NASH (steatosis, hepatocyte ballooning and inflammation) with fibrosis already after 12-week feeding. NASH was accompanied by hepatic mitochondrial dysfunction, characterised by decreased mitochondrial respiratory chain (MRC) complex I and IV activity, ATP depletion, ultrastructural abnormalities, together with higher 4-hydroxynonenal (HNE) levels, increased uncoupling protein 2 (UCP2) and tumour necrosis factor-α (TNF-α) mRNA and free cholesterol accumulation. In our model of NASH and acquired mitochondrial dysfunction, RYGB induced sustained weight loss, improved insulin resistance and inhibited progression of NASH, with a marked reversal of fibrosis. In parallel, RYGB preserved hepatic MRC complex I activity, restored ATP levels, limited HNE production and decreased TNF-α mRNA. CONCLUSIONS: Progression of NASH and NASH-related hepatic mitochondrial dysfunction can be prevented by RYGB. RYGB preserves respiratory chain complex activity, thereby restoring energy output, probably by limiting the amount of oxidative stress and TNF-α. These data suggest that modulation of hepatic mitochondrial function contributes to the favourable effect of RYBG on established NASH.


Assuntos
Derivação Gástrica , Mitocôndrias Hepáticas/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/cirurgia , Animais , Humanos , Resistência à Insulina , Hepatopatias , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Fator de Necrose Tumoral alfa
14.
Molecules ; 19(9): 15088-102, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25244288

RESUMO

We investigated the effect of the Arabidopsis thaliana-derived decapeptide OSIP108 on human cell tolerance to the chemotherapeutic agent cisplatin (Cp), which induces apoptosis and mitochondrial dysfunction. We found that OSIP108 increases the tolerance of HepG2 cells to Cp and prevents Cp-induced changes in basic cellular metabolism. More specifically, we demonstrate that OSIP108 reduces Cp-induced inhibition of respiration, decreases glycolysis and prevents Cp-uptake in HepG2 cells. Apart from its protective action against Cp in human cells, OSIP108 also increases the yeast Saccharomyces cerevisiae tolerance to Cp. A limited yeast-based study of OSIP108 analogs showed that cyclization does not severely affect its activity, which was further confirmed in HepG2 cells. Furthermore, the similarity in the activity of the D-stereoisomer (mirror image) form of OSIP108 with the L-stereoisomer suggests that its mode of action does not involve binding to a stereospecific receptor. In addition, as OSIP108 decreases Cp uptake in HepG2 cells and the anti-Cp activity of OSIP108 analogs without free cysteine is reduced, OSIP108 seems to protect against Cp-induced toxicity only partly via complexation. Taken together, our data indicate that OSIP108 and its cyclic derivatives can protect against Cp-induced toxicity and, thus, show potential as treatment options for mitochondrial dysfunction- and apoptosis-related conditions.


Assuntos
Antineoplásicos/toxicidade , Proteínas de Arabidopsis/farmacologia , Arabidopsis/fisiologia , Cisplatino/toxicidade , Mitocôndrias/efeitos dos fármacos , Células Hep G2 , Humanos , Mitocôndrias/fisiologia
15.
Toxicol Appl Pharmacol ; 280(2): 345-51, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25134866

RESUMO

BACKGROUND: Wilson disease (WD) is caused by accumulation of excess copper (Cu) due to a mutation in the gene encoding the liver Cu transporter ATP7B, and is characterized by acute liver failure or cirrhosis and neuronal cell death. We investigated the effect of OSIP108, a plant derived decapeptide that prevents Cu-induced apoptosis in yeast and human cells, on Cu-induced toxicity in various mammalian in vitro models relevant for WD and in a Cu-toxicity zebrafish larvae model applicable to WD. METHODS: The effect of OSIP108 was evaluated on viability of various cell lines in the presence of excess Cu, on liver morphology of a Cu-treated zebrafish larvae strain that expresses a fluorescent reporter in hepatocytes, and on oxidative stress levels in wild type AB zebrafish larvae. RESULTS: OSIP108 increased not only viability of Cu-treated CHO cells transgenically expressing ATP7B and the common WD-causing mutant ATP7B(H1069Q), but also viability of Cu-treated human glioblastoma U87 cells. Aberrancies in liver morphology of Cu-treated zebrafish larvae were observed, which were further confirmed as Cu-induced hepatotoxicity by liver histology. Injections of OSIP108 into Cu-treated zebrafish larvae significantly increased the amount of larvae with normal liver morphology and decreased Cu-induced production of reactive oxygen species. CONCLUSIONS: OSIP108 prevents Cu-induced toxicity in in vitro models and in a Cu-toxicity zebrafish larvae model applicable to WD. GENERAL SIGNIFICANCE: All the above data indicate the potential of OSIP108 as a drug lead for further development as a novel WD treatment.


Assuntos
Proteínas de Arabidopsis/farmacologia , Cobre/toxicidade , Degeneração Hepatolenticular/tratamento farmacológico , Oligopeptídeos/farmacologia , Adenosina Trifosfatases/genética , Animais , Células CHO , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , ATPases Transportadoras de Cobre , Cricetulus , Glioblastoma , Humanos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra
16.
Biochim Biophys Acta ; 1840(10): 3131-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24973565

RESUMO

BACKGROUND: Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW: In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS: All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE: Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.


Assuntos
Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Mitocôndrias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/genética , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
17.
Biochim Biophys Acta ; 1843(6): 1207-1215, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24632503

RESUMO

We previously identified the Arabidopsis thaliana-derived decapeptide OSIP108, which increases tolerance of plants and yeast cells to oxidative stress. As excess copper (Cu) is known to induce oxidative stress and apoptosis, and is characteristic for the human pathology Wilson disease, we investigated the effect of OSIP108 on Cu-induced toxicity in yeast. We found that OSIP108 increased yeast viability in the presence of toxic Cu concentrations, and decreased the prevalence of Cu-induced apoptotic markers. Next, we translated these results to the human hepatoma HepG2 cell line, demonstrating anti-apoptotic activity of OSIP108 in this cell line. In addition, we found that OSIP108 did not affect intracellular Cu levels in HepG2 cells, but preserved HepG2 mitochondrial ultrastructure. As Cu is known to induce acid sphingomyelinase activity of HepG2 cells, we performed a sphingolipidomic analysis of OSIP108-treated HepG2 cells. We demonstrated that OSIP108 decreased the levels of several sphingoid bases and ceramide species. Moreover, exogenous addition of the sphingoid base dihydrosphingosine abolished the protective effect of OSIP108 against Cu-induced cell death in yeast. These findings indicate the potential of OSIP108 to prevent Cu-induced apoptosis, possibly via its effects on sphingolipid homeostasis.


Assuntos
Apoptose/efeitos dos fármacos , Arabidopsis/metabolismo , Cobre/farmacologia , Oligopeptídeos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Esfingolipídeos/farmacologia , Células Hep G2 , Humanos , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
18.
Microb Cell ; 1(11): 352-364, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-28357214

RESUMO

The human pathology Wilson disease (WD) is characterized by toxic copper (Cu) accumulation in brain and liver, resulting in, among other indications, mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify novel compounds that can alleviate Cu-induced toxicity, we screened the Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We identified 2 members of the drug class of Angiotensin II Type 1 receptor blockers (ARBs) that could increase yeast tolerance to Cu, namely Candesartan and Losartan. Subsequently, we show that specific ARBs can increase yeast tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp). The latter also induces mitochondrial dysfunction and apoptosis in mammalian cells. We further demonstrate that specific ARBs can prevent the prevalence of Cu-induced apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which demonstrated most pronounced reduction of apoptosis-related markers. Next, we tested the sensitivity of a selection of yeast knockout mutants affected in detoxification of reactive oxygen species (ROS) and Cu for Candesartan Cilexetil rescue in presence of Cu. These data indicate that Candesartan Cilexetil increases yeast tolerance to Cu irrespectively of major ROS-detoxifying proteins. Finally, we show that specific ARBs can increase mammalian cell tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic markers. All the above point to the potential of ARBs in preventing Cu-induced toxicity in yeast and mammalian cells.

19.
Microb Cell ; 1(7): 210-224, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-28357246

RESUMO

Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also of cancer, diabetes and rare diseases such as Wilson's disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA