Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 5: 1371-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247120

RESUMO

Highly monodispersed Cu-Pt bimetallic nanoclusters were synthesized by a facile synthesis approach. Analysis of transmission electron microscopy (TEM) and spherical aberration (C s)-corrected scanning transmission electron microscopy (STEM) images shows that the average diameter of the Cu-Pt nanoclusters is 3.0 ± 1.0 nm. The high angle annular dark field (HAADF-STEM) images, intensity profiles, and energy dispersive X-ray spectroscopy (EDX) line scans, allowed us to study the distribution of Cu and Pt with atomistic resolution, finding that Pt is embedded randomly in the Cu lattice. A novel simulation method is applied to study the growth mechanism, which shows the formation of alloy structures in good agreement with the experimental evidence. The findings give insight into the formation mechanism of the nanosized Cu-Pt bimetallic catalysts.

2.
J Colloid Interface Sci ; 428: 32-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24910031

RESUMO

HYPOTHESIS: Heterogeneous nucleation of silver oxide (Ag2O) onto oxide microparticles (OMPs) followed by spontaneous thermal decomposition produce nanostructures made of OMPs decorated with silver nanoparticles (OMP|AgNPs). EXPERIMENTS: Colloidal chemistry methods have been used to produce the decoration of OMPs with silver nanoparticles (AgNPs), by carrying out the Ag2O precipitation/thermal decomposition. The process is driven in water enriched acetone medium containing NaOH, NH3, AgNO3 and SiO2MPs as substrate. Optical and morphological properties of OMP|AgNPs were characterized by using STEM, EDS, HRTEM and Raman spectroscopy. FINDINGS: A new synthetic method to decorate OMPs (TiO2, SiO2) with metallic AgNPs in a single step/single pot reaction is proven effective to produce OMP|AgNPs either in aqueous or water enriched media.


Assuntos
Nanopartículas Metálicas/química , Óxidos/química , Dióxido de Silício/química , Compostos de Prata/química , Prata/química , Titânio/química , Precipitação Química , Nanopartículas Metálicas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA