Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38996576

RESUMO

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.

2.
Pharmaceutics ; 16(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543296

RESUMO

Chronic lymphocytic leukemia (CLL) is a widespread type of leukemia that predominantly targets B lymphocytes, undermining the balance between cell proliferation and apoptosis. In healthy B cells, miR-15/16, a tandem of microRNAs, functions as a tumor suppressor, curbing the expression of the antiapoptotic B cell lymphoma 2 protein (Bcl-2). Conversely, in CLL patients, a recurring deletion on chromosome 13q14, home to the miR15-a and miR16-1 genes, results in Bcl-2 overexpression, thereby fostering the onset of the pathology. In the present research, a novel approach utilizing humanized ferritin-based nanoparticles was employed to successfully deliver miR15-a and miR-16-1 into MEG01 cells, a model characterized by the classic CLL deletion and overexpression of the human ferritin receptor (TfR1). The loaded miR15-a and miR16-1, housed within modified HumAfFt, were efficiently internalized via the MEG01 cells and properly directed into the cytoplasm. Impressively, the concurrent application of miR15-a and miR16-1 demonstrated a robust capacity to induce apoptosis through the reduction in Bcl-2 expression levels. This technology, employing RNA-loaded ferritin nanoparticles, hints at promising directions in the battle against CLL, bridging the substantial gap left by traditional transfection agents and indicating a pathway that may offer hope for more effective treatments.

3.
FEBS J ; 289(6): 1625-1649, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694685

RESUMO

De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein-protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.


Assuntos
Timidina Monofosfato , Timidilato Sintase , Núcleo Celular/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Humanos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidina Monofosfato/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
4.
Proteins ; 90(2): 435-442, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34495558

RESUMO

Aspergillus fumigatus is a saprophytic ubiquitous fungus whose spores can trigger reactions such as allergic bronchopulmonary aspergillosis or the fatal invasive pulmonary aspergillosis. To survive in the lungs, the fungus must adapt to a hypoxic and nutritionally restrictive environment, exploiting the limited availability of aromatic amino acids (AAAs) in the best possible way, as mammals do not synthesize them. A key enzyme for AAAs catabolism in A. fumigatus is AroH, a pyridoxal 5'-phosphate-dependent aromatic aminotransferase. AroH was recently shown to display a broad substrate specificity, accepting L-kynurenine and α-aminoadipate as amino donors besides AAAs. Given its pivotal role in the adaptability of the fungus to nutrient conditions, AroH represents a potential target for the development of innovative therapies against A. fumigatus-related diseases. We have solved the crystal structure of Af-AroH at 2.4 Å resolution and gained new insight into the dynamics of the enzyme's active site, which appears to be crucial for the design of inhibitors. The conformational plasticity of the active site pocket is probably linked to the wide substrate specificity of AroH.


Assuntos
Aspergillus fumigatus/enzimologia , Transaminases/química , Domínio Catalítico , Especificidade por Substrato
5.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207731

RESUMO

Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the microvasculature, cross the blood-brain barrier, and metabolically adapt to the nutrients available in the new microenvironment. In this review, we analyzed what makes the brain a suitable site for the development of metastases and how this microenvironment, through the continuous release of neurotransmitters and amino acids in the extracellular milieu, is able to support the metabolic needs of metastasizing cells. We also suggested a possible role for amino acids released by the brain through the endothelial cells of the blood-brain barrier into the bloodstream in triggering the process of extravasation/invasion of the brain parenchyma.

6.
ChemMedChem ; 15(4): 385-390, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31805205

RESUMO

The recent outbreaks of Zika virus (ZIKV) infection worldwide make the discovery of novel antivirals against flaviviruses a research priority. This work describes the identification of novel inhibitors of ZIKV through a structure-based virtual screening approach using the ZIKV NS5-MTase. A novel series of molecules with a carbazoyl-aryl-urea structure has been discovered and a library of analogues has been synthesized. The new compounds inhibit ZIKV MTase with IC50 between 23-48 µM. In addition, carbazoyl-aryl-ureas also proved to inhibit ZIKV replication activity at micromolar concentration.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Metiltransferases/antagonistas & inibidores , Ureia/farmacologia , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Metiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química , Zika virus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA