Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(5): 703-724, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38038968

RESUMO

Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE: ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Camundongos , Animais , Lipólise/genética , Metabolismo dos Lipídeos , Lipase/genética , Lipase/metabolismo , Serina/metabolismo , Microambiente Tumoral , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina
2.
NPJ Precis Oncol ; 7(1): 115, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923835

RESUMO

In this study, we investigated the metabolic alterations associated with clinical response to chemotherapy in patients with ovarian cancer. Pre- and post-neoadjuvant chemotherapy (NACT) tissues from patients with high-grade serous ovarian cancer (HGSC) who had poor response (PR) or excellent response (ER) to NACT were examined. Desorption electrospray ionization mass spectrometry (DESI-MS) was performed on sections of HGSC tissues collected according to a rigorous laparoscopic triage algorithm. Quantitative MS-based proteomics and phosphoproteomics were performed on a subgroup of pre-NACT samples. Highly abundant metabolites in the pre-NACT PR tumors were related to pyrimidine metabolism in the epithelial regions and oxygen-dependent proline hydroxylation of hypoxia-inducible factor alpha in the stromal regions. Metabolites more abundant in the epithelial regions of post-NACT PR tumors were involved in the metabolism of nucleotides, and metabolites more abundant in the stromal regions of post-NACT PR tumors were related to aspartate and asparagine metabolism, phenylalanine and tyrosine metabolism, nucleotide biosynthesis, and the urea cycle. A predictive model built on ions with differential abundances allowed the classification of patients' tumor responses as ER or PR with 75% accuracy (10-fold cross-validation ridge regression model). These findings offer new insights related to differential responses to chemotherapy and could lead to novel actionable targets.

3.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 1-25, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-36944233

RESUMO

Offering superb speed, chemical specificity, and analytical sensitivity, direct mass spectrometry (MS) technologies are highly amenable for the molecular analysis of complex tissues to aid in disease characterization and help identify new diagnostic, prognostic, and predictive markers. By enabling detection of clinically actionable molecular profiles from tissues and cells, direct MS technologies have the potential to guide treatment decisions and transform sample analysis within clinical workflows. In this review, we highlight recent health-related developments and applications of direct MS technologies that exhibit tangible potential to accelerate clinical research and disease diagnosis, including oncological and neurodegenerative diseases and microbial infections. We focus primarily on applications that employ direct MS technologies for tissue analysis, including MS imaging technologies to map spatial distributions of molecules in situ as well as handheld devices for rapid in vivo and ex vivo tissue analysis.


Assuntos
Oncologia , Tecnologia , Espectrometria de Massas , Fluxo de Trabalho
4.
iScience ; 26(2): 106020, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824283

RESUMO

Despite modest clinical improvement with anti-vascular endothelial growth factor antibody (AVA) therapy in ovarian cancer, adaptive resistance is ubiquitous and additional options are limited. A dependence on glutamine metabolism, via the enzyme glutaminase (GLS), is a known mechanism of adaptive resistance and we aimed to investigate the utility of a GLS inhibitor (GLSi). Our in vitro findings demonstrated increased glutamine abundance and a significant cytotoxic effect in AVA-resistant tumors when GLSi was administered in combination with bevacizumab. In vivo, GLSi led to a reduction in tumor growth as monotherapy and when combined with AVA. Furthermore, GLSi initiated after the emergence of resistance to AVA therapy resulted in a decreased metabolic conversion of pyruvate to lactate as assessed by hyperpolarized magnetic resonance spectroscopy and demonstrated robust antitumor effects with a survival advantage. Given the increasing population of patients receiving AVA therapy, these findings justify further development of GLSi in AVA resistance.

5.
Anal Chem ; 93(37): 12582-12593, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34432430

RESUMO

The outbreak of COVID-19 has created an unprecedent global crisis. While the polymerase chain reaction (PCR) is the gold standard method for detecting active SARS-CoV-2 infection, alternative high-throughput diagnostic tests are of a significant value to meet universal testing demands. Here, we describe a new design of the MasSpec Pen technology integrated to electrospray ionization (ESI) for direct analysis of clinical swabs and investigate its use for COVID-19 screening. The redesigned MasSpec Pen system incorporates a disposable sampling device refined for uniform and efficient analysis of swab tips via liquid extraction directly coupled to an ESI source. Using this system, we analyzed nasopharyngeal swabs from 244 individuals including symptomatic COVID-19 positive, symptomatic negative, and asymptomatic negative individuals, enabling rapid detection of rich lipid profiles. Two statistical classifiers were generated based on the lipid information acquired. Classifier 1 was built to distinguish symptomatic PCR-positive from asymptomatic PCR-negative individuals, yielding a cross-validation accuracy of 83.5%, sensitivity of 76.6%, and specificity of 86.6%, and validation set accuracy of 89.6%, sensitivity of 100%, and specificity of 85.3%. Classifier 2 was built to distinguish symptomatic PCR-positive patients from negative individuals including symptomatic PCR-negative patients with moderate to severe symptoms and asymptomatic individuals, yielding a cross-validation accuracy of 78.4%, specificity of 77.21%, and sensitivity of 81.8%. Collectively, this study suggests that the lipid profiles detected directly from nasopharyngeal swabs using MasSpec Pen-ESI mass spectrometry (MS) allow fast (under a minute) screening of the COVID-19 disease using minimal operating steps and no specialized reagents, thus representing a promising alternative high-throughput method for screening of COVID-19.


Assuntos
COVID-19 , Testes Diagnósticos de Rotina , Humanos , Nasofaringe , SARS-CoV-2 , Sensibilidade e Especificidade , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA