Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biol Chem ; 404(11-12): 1101-1121, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37709756

RESUMO

The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.


Assuntos
Biologia , Estabilidade de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo
2.
J Mol Biol ; 435(11): 167922, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330282

RESUMO

Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas , Trifosfato de Adenosina/química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas/química
3.
Angew Chem Int Ed Engl ; 62(23): e202218064, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36970768

RESUMO

The synthetic neomycin-sensing riboswitch interacts with its cognate ligand neomycin as well as with the related antibiotics ribostamycin and paromomycin. Binding of these aminoglycosides induces a very similar ground state structure in the RNA, however, only neomycin can efficiently repress translation initiation. The molecular origin of these differences has been traced back to differences in the dynamics of the ligand:riboswitch complexes. Here, we combine five complementary fluorine based NMR methods to accurately quantify seconds to microseconds dynamics in the three riboswitch complexes. Our data reveal complex exchange processes with up to four structurally different states. We interpret our findings in a model that shows an interplay between different chemical groups in the antibiotics and specific bases in the riboswitch. More generally, our data underscore the potential of 19 F NMR methods to characterize complex exchange processes with multiple excited states.


Assuntos
Neomicina , Riboswitch , Neomicina/química , Neomicina/metabolismo , Ligantes , Antibacterianos/química , Aminoglicosídeos
4.
J Biomol NMR ; 77(1-2): 55-67, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36639431

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that 15N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.


Assuntos
Prótons , Triptofano , Flúor , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Triptofano/química , Radioisótopos de Flúor/química
6.
Nat Chem Biol ; 18(10): 1152-1160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36008487

RESUMO

Nuclear magnetic resonance (NMR) methods that quantitatively probe motions on molecular and atomic levels have propelled the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. In this work, we studied the structure and dynamics of the essential 100-kDa eukaryotic 5'→3' exoribonuclease Xrn2. A combination of complementary fluorine and methyl-TROSY NMR spectroscopy reveals that the apo enzyme is highly dynamic around the catalytic center. These observed dynamics are in agreement with a transition of the enzyme from the ground state into a catalytically competent state. We show that the conformational equilibrium in Xrn2 shifts substantially toward the active state in the presence of substrate and magnesium. Finally, our data reveal that the dynamics in Xrn2 correlate with the RNA degradation rate, as a mutation that attenuates motions also affects catalytic activity. In that light, our results stress the importance of studies that go beyond static structural information.


Assuntos
Exorribonucleases , Flúor , Catálise , Exorribonucleases/genética , Magnésio , Ressonância Magnética Nuclear Biomolecular
7.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34453003

RESUMO

The adenosine triphosphate (ATP)-dependent DEAD-box RNA helicase DbpA from Escherichia coli functions in ribosome biogenesis. DbpA is targeted to the nascent 50S subunit by an ancillary, carboxyl-terminal RNA recognition motif (RRM) that specifically binds to hairpin 92 (HP92) of the 23S ribosomal RNA (rRNA). The interaction between HP92 and the RRM is required for the helicase activity of the RecA-like core domains of DbpA. Here, we elucidate the structural basis by which DbpA activity is endorsed when the enzyme interacts with the maturing ribosome. We used nuclear magnetic resonance (NMR) spectroscopy to show that the RRM and the carboxyl-terminal RecA-like domain tightly interact. This orients HP92 such that this RNA hairpin can form electrostatic interactions with a positively charged patch in the N-terminal RecA-like domain. Consequently, the enzyme can stably adopt the catalytically important, closed conformation. The substrate binding mode in this complex reveals that a region 5' to helix 90 in the maturing ribosome is specifically targeted by DbpA. Finally, our results indicate that the ribosome maturation defects induced by a dominant negative DbpA mutation are caused by a delayed dissociation of DbpA from the nascent ribosome. Taken together, our findings provide unique insights into the important regulatory mechanism that modulates the activity of DbpA.


Assuntos
Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Ribossomos/metabolismo , RNA Helicases DEAD-box/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Cinética , Conformação de Ácido Nucleico , Conformação Proteica
8.
Nat Commun ; 12(1): 2748, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980881

RESUMO

Imidazole glycerol phosphate synthase (HisFH) is a heterodimeric bienzyme complex operating at a central branch point of metabolism. HisFH is responsible for the HisH-catalyzed hydrolysis of glutamine to glutamate and ammonia, which is then used for a cyclase reaction by HisF. The HisFH complex is allosterically regulated but the underlying mechanism is not well understood. Here, we elucidate the molecular basis of the long range, allosteric activation of HisFH. We establish that the catalytically active HisFH conformation is only formed when the substrates of both HisH and HisF are bound. We show that in this conformation an oxyanion hole in the HisH active site is established, which rationalizes the observed 4500-fold allosteric activation compared to the inactive conformation. In solution, the inactive and active conformations are in a dynamic equilibrium and the HisFH turnover rates correlate with the population of the active conformation, which is in accordance with the ensemble model of allostery.


Assuntos
Regulação Alostérica , Aminoidrolases/química , Aminoidrolases/metabolismo , Aminoidrolases/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glutamina/metabolismo , Hidrólise , Imidazóis/metabolismo , Espectroscopia de Ressonância Magnética , Complexos Multienzimáticos , Mutação , Conformação Proteica , Ribonucleotídeos/metabolismo , Thermotoga maritima/enzimologia
10.
J Biomol NMR ; 74(12): 767-768, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33237374

RESUMO

In the original publication, Figures 3 and 6 were displayed incorrectly due to a mistake made by the publisher. The correct version of Figs. 3 and 6 are given below.

11.
J Biomol NMR ; 74(12): 753-766, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32997265

RESUMO

Proteins and nucleic acids are highly dynamic bio-molecules that can populate a variety of conformational states. NMR relaxation dispersion (RD) methods are uniquely suited to quantify the associated kinetic and thermodynamic parameters. Here, we present a consistent suite of 19F-based CPMG, on-resonance R1ρ and off-resonance R1ρ RD experiments. We validate these experiments by studying the unfolding transition of a 7.5 kDa cold shock protein. Furthermore we show that the 19F RD experiments are applicable to very large molecular machines by quantifying dynamics in the 360 kDa half-proteasome. Our approach significantly extends the timescale of chemical exchange that can be studied with 19F RD, adds robustness to the extraction of exchange parameters and can determine the absolute chemical shifts of excited states. Importantly, due to the simplicity of 19F NMR spectra, it is possible to record complete datasets within hours on samples that are of very low costs. This makes the presented experiments ideally suited to complement static structural information from cryo-EM and X-ray crystallography with insights into functionally relevant motions.


Assuntos
Flúor/química , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular , Proteínas de Bactérias/química , Cinética , Complexo de Endopeptidases do Proteassoma/química , Dobramento de Proteína , Termodinâmica , Thermotoga maritima/química
12.
Proc Natl Acad Sci U S A ; 117(32): 19237-19244, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723815

RESUMO

The 5' messenger RNA (mRNA) cap structure enhances translation and protects the transcript against exonucleolytic degradation. During mRNA turnover, this cap is removed from the mRNA. This decapping step is catalyzed by the Scavenger Decapping Enzyme (DcpS), in case the mRNA has been exonucleolyticly shortened from the 3' end by the exosome complex. Here, we show that DcpS only processes mRNA fragments that are shorter than three nucleotides in length. Based on a combination of methyl transverse relaxation optimized (TROSY) NMR spectroscopy and X-ray crystallography, we established that the DcpS substrate length-sensing mechanism is based on steric clashes between the enzyme and the third nucleotide of a capped mRNA. For longer mRNA substrates, these clashes prevent conformational changes in DcpS that are required for the formation of a catalytically competent active site. Point mutations that enlarge the space for the third nucleotide in the mRNA body enhance the activity of DcpS on longer mRNA species. We find that this mechanism to ensure that the enzyme is not active on translating long mRNAs is conserved from yeast to humans. Finally, we show that the products that the exosome releases after 3' to 5' degradation of the mRNA body are indeed short enough to be decapped by DcpS. Our data thus directly confirms the notion that mRNA products of the exosome are direct substrates for DcpS. In summary, we demonstrate a direct relationship between conformational changes and enzyme activity that is exploited to achieve substrate selectivity.


Assuntos
Endorribonucleases/metabolismo , RNA Mensageiro/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Endorribonucleases/química , Endorribonucleases/genética , Humanos , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo
13.
Prog Nucl Magn Reson Spectrosc ; 116: 56-84, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32130959

RESUMO

A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.


Assuntos
Espectroscopia de Ressonância Magnética , Animais , Humanos , Marcação por Isótopo , Proteínas de Membrana/química , Metilação , Modelos Moleculares , Chaperonas Moleculares/química
14.
Nat Commun ; 10(1): 4536, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586050

RESUMO

Liquid-liquid phase separation is increasingly recognized as a process involved in cellular organization. Thus far, a detailed structural characterization of this intrinsically heterogeneous process has been challenging. Here we combine solid- and solution-state NMR spectroscopy to obtain atomic-level insights into the assembly and maturation of cytoplasmic processing bodies that contain mRNA as well as enzymes involved in mRNA degradation. In detail, we have studied the enhancer of decapping 3 (Edc3) protein that is a central hub for processing body formation in yeast. Our results reveal that Edc3 domains exhibit diverse levels of structural organization and dynamics after liquid-liquid phase separation. In addition, we find that interactions between the different Edc3 domains and between Edc3 and RNA in solution are largely preserved in the condensed protein state, allowing processing bodies to rapidly form and dissociate upon small alterations in the cellular environment.


Assuntos
Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , RNA Fúngico , Eletricidade Estática
15.
Curr Opin Struct Biol ; 59: 115-123, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31473440

RESUMO

Eukaryotic mRNAs contain a 5' cap structure that protects the transcript against rapid exonucleolytic degradation. The regulation of cellular mRNA levels therefore depends on a precise control of the mRNA decapping pathways. The major mRNA decapping enzyme in eukaryotic cells is Dcp2. It is regulated by interactions with several activators, including Dcp1, Edc1, and Edc3, as well as by an autoinhibition mechanism. The structural and mechanistical characterization of Dcp2 complexes has long been impeded by the high flexibility and dynamic nature of the enzyme. Here we review recent insights into the catalytically active conformation of the mRNA decapping complex, the mode of action of decapping activators and the large interactions network that Dcp2 is embedded in.


Assuntos
Endorribonucleases/química , Endorribonucleases/metabolismo , Modelos Moleculares , Sítios de Ligação , Humanos , Conformação Molecular , Transição de Fase , Ligação Proteica , Mapas de Interação de Proteínas , Capuzes de RNA/química , RNA Mensageiro/química , RNA Mensageiro/genética
16.
Chemphyschem ; 18(19): 2697-2703, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28792111

RESUMO

Solid-state NMR spectroscopy can provide insight into protein structure and dynamics at the atomic level without inherent protein size limitations. However, a major hurdle to studying large proteins by solid-state NMR spectroscopy is related to spectral complexity and resonance overlap, which increase with molecular weight and severely hamper the assignment process. Here the use of two sets of experiments is shown to expand the tool kit of 1 H-detected assignment approaches, which correlate a given amide pair either to the two adjacent CO-CA pairs (4D hCOCANH/hCOCAcoNH), or to the amide 1 H of the neighboring residue (3D HcocaNH/HcacoNH, which can be extended to 5D). The experiments are based on efficient coherence transfers between backbone atoms using INEPT transfers between carbons and cross-polarization for heteronuclear transfers. The utility of these experiments is exemplified with application to assemblies of deuterated, fully amide-protonated proteins from approximately 20 to 60 kDa monomer, at magic-angle spinning (MAS) frequencies from approximately 40 to 55 kHz. These experiments will also be applicable to protonated proteins at higher MAS frequencies. The resonance assignment of a domain within the 50.4 kDa bacteriophage T5 tube protein pb6 is reported, and this is compared to NMR assignments of the isolated domain in solution. This comparison reveals contacts of this domain to the core of the polymeric tail tube assembly.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Amidas/química
17.
Nucleic Acids Res ; 45(11): 6911-6922, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28472520

RESUMO

Cellular liquid-liquid phase separation (LLPS) results in the formation of dynamic granules that play an important role in many biological processes. On a molecular level, the clustering of proteins into a confined space results from an indefinite network of intermolecular interactions. Here, we introduce and exploit a novel high-throughput bottom-up approach to study how the interactions between RNA, the Dcp1:Dcp2 mRNA decapping complex and the scaffolding proteins Edc3 and Pdc1 result in the formation of processing bodies. We find that the LLPS boundaries are close to physiological concentrations upon inclusion of multiple proteins and RNA. Within in vitro processing bodies the RNA is protected against endonucleolytic cleavage and the mRNA decapping activity is reduced, which argues for a role of processing bodies in temporary mRNA storage. Interestingly, the intrinsically disordered region (IDR) in the Edc3 protein emerges as a central hub for interactions with both RNA and mRNA decapping factors. In addition, the Edc3 IDR plays a role in the formation of irreversible protein aggregates that are potentially detrimental for cellular homeostasis. In summary, our data reveal insights into the mechanisms that lead to cellular LLPS and into the way this influences enzymatic activity.


Assuntos
RNA Fúngico/isolamento & purificação , RNA Mensageiro/isolamento & purificação , Endorribonucleases/química , Endorribonucleases/metabolismo , Extração Líquido-Líquido , Mapas de Interação de Proteínas , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(23): 6034-6039, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533364

RESUMO

Crystal structures of enzymes are indispensable to understanding their mechanisms on a molecular level. It, however, remains challenging to determine which structures are adopted in solution, especially for dynamic complexes. Here, we study the bilobed decapping enzyme Dcp2 that removes the 5' cap structure from eukaryotic mRNA and thereby efficiently terminates gene expression. The numerous Dcp2 structures can be grouped into six states where the domain orientation between the catalytic and regulatory domains significantly differs. Despite this wealth of structural information it is not possible to correlate these states with the catalytic cycle or the activity of the enzyme. Using methyl transverse relaxation-optimized NMR spectroscopy, we demonstrate that only three of the six domain orientations are present in solution, where Dcp2 adopts an open, a closed, or a catalytically active state. We show how mRNA substrate and the activator proteins Dcp1 and Edc1 influence the dynamic equilibria between these states and how this modulates catalytic activity. Importantly, the active state of the complex is only stably formed in the presence of both activators and the mRNA substrate or the m7GDP decapping product, which we rationalize based on a crystal structure of the Dcp1:Dcp2:Edc1:m7GDP complex. Interestingly, we find that the activating mechanisms in Dcp2 also result in a shift of the substrate specificity from bacterial to eukaryotic mRNA.


Assuntos
Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Endorribonucleases/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica , Proteínas de Ligação ao Cap de RNA/química , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(15): 3933-3938, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348210

RESUMO

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development akin to FAK kinase-dead mice. We identified myosin-1E (MYO1E), an actin-dependent molecular motor, to interact directly with the FAK FERM-kinase linker and induce FAK kinase activity and Y397 phosphorylation. Active FAK in turn accumulated in the nucleus where it led to the expression of osteopontin and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Melanoma/metabolismo , Miosinas/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Perda do Embrião/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/química , Quinase 1 de Adesão Focal/genética , Humanos , Melanoma/patologia , Mesoderma/embriologia , Camundongos Mutantes , Miosina Tipo I , Miosinas/química , Miosinas/genética , Osteopontina/genética , Osteopontina/metabolismo , Fosforilação , Gravidez , Domínios Proteicos , Neoplasias Cutâneas/patologia , Tirosina/metabolismo
20.
Nat Chem Biol ; 13(5): 522-528, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28288106

RESUMO

The exosome is a large molecular machine involved in RNA degradation and processing. Here we address how the trimeric Rrp4 cap enhances the activity of the archaeal enzyme complex. Using methyl-TROSY NMR methods we identified a 50-Å long RNA binding path on each Rrp4 protomer. We show that the Rrp4 cap can thus simultaneously recruit three substrates, one of which is degraded in the core while the others are positioned for subsequent degradation rounds. The local interaction energy between the substrate and the Rrp4-exosome increases from the periphery of the complex toward the active sites. Notably, the intrinsic interaction strength between the cap and the substrate is weakened as soon as substrates enter the catalytic barrel, which provides a means to reduce friction during substrate movements toward the active sites. Our data thus reveal a sophisticated exosome-substrate interaction mechanism that enables efficient RNA degradation.


Assuntos
Proteínas Arqueais/metabolismo , Exossomos/metabolismo , RNA Arqueal/metabolismo , Sulfolobus solfataricus/metabolismo , Proteínas Arqueais/química , Exossomos/química , Ressonância Magnética Nuclear Biomolecular , RNA Arqueal/química , Sulfolobus solfataricus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA