Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 9(3): 784-792, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35330905

RESUMO

While plasmonic particles can provide optical resonances in a wide spectral range from the lower visible up to the near-infrared, often, symmetry effects are utilized to obtain particular optical responses. By breaking certain spatial symmetries, chiral structures arise and provide robust chiroptical responses to these plasmonic resonances. Here, we observe strong chiroptical responses in the linear and nonlinear optical regime for chiral L-handed helicoid-III nanoparticles and quantify them by means of an asymmetric factor, the so-called g-factor. We calculate the linear optical g-factors for two distinct chiroptical resonances to -0.12 and -0.43 and the nonlinear optical g-factors to -1.45 and -1.63. The results demonstrate that the chirality of the helicoid-III nanoparticles is strongly enhanced in the nonlinear regime.

2.
ACS Nano ; 15(10): 16719-16728, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34606724

RESUMO

The nonlinear process of second harmonic generation (SHG) in monolayer (1L) transition metal dichalcogenides (TMD), like WS2, strongly depends on the polarization state of the excitation light. By combination of plasmonic nanostructures with 1L-WS2 by transferring it onto a plasmonic nanoantenna array, a hybrid metasurface is realized impacting the polarization dependency of its SHG. Here, we investigate how plasmonic dipole resonances affect the process of SHG in plasmonic-TMD hybrid metasurfaces by nonlinear spectroscopy. We show that the polarization dependency is affected by the lattice structure of plasmonic nanoantenna arrays as well as by the relative orientation between the 1L-WS2 and the individual plasmonic nanoantennas. In addition, such hybrid metasurfaces show SHG in polarization states, where SHG is usually forbidden for either 1L-WS2 or plasmonic nanoantennas. By comparing the SHG in these channels with the SHG generated by the hybrid metasurface components, we detect an enhancement of the SHG signal by a factor of more than 40. Meanwhile, an attenuation of the SHG signal in usually allowed polarization states is observed. Our study provides valuable insight into hybrid systems where symmetries strongly affect the SHG and enable tailored SHG in 1L-WS2 for future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA