Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(18): 7506-11, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589867

RESUMO

The human malaria parasite Plasmodium falciparum harbors a relict, nonphotosynthetic plastid of algal origin termed the apicoplast. Although considerable progress has been made in defining the metabolic functions of the apicoplast, information on the composition and biogenesis of the four delimiting membranes of this organelle is limited. Here, we report an efficient method for preparing highly purified apicoplasts from red blood cell parasite stages and the comprehensive lipidomic analysis of this organelle. Apicoplasts were prepared from transgenic parasites expressing an epitope-tagged triosephosphate transporter and immunopurified on magnetic beads. Gas and liquid chromatography MS analyses of isolated apicoplast lipids indicated significant differences compared with total parasite lipids. In particular, apicoplasts were highly enriched in phosphatidylinositol, consistent with a suggested role for phosphoinositides in targeting membrane vesicles to apicoplasts. Apicoplast phosphatidylinositol and other phospholipids were also enriched in saturated fatty acids, which could reflect limited acyl exchange with other membrane phospholipids and/or a requirement for specific physical properties. Lipids atypical for plastids (sphingomyelins, ceramides, and cholesterol) were detected in apicoplasts. The presence of cholesterol in apicoplast membranes was supported by filipin staining of isolated apicoplasts. Galactoglycerolipids, dominant in plant and algal plastids, were not detected in P. falciparum apicoplasts, suggesting that these glycolipids are a hallmark of photosynthetic plastids and were lost when these organisms assumed a parasitic lifestyle. Apicoplasts thus contain an atypical melange of lipids scavenged from the human host alongside lipids remodeled by the parasite cytoplasm, and stable isotope labeling shows some apicoplast lipids are generated de novo by the organelle itself.


Assuntos
Lipídeos/química , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Plastídeos/química , Colesterol/metabolismo , Cromatografia Líquida , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Metabolismo dos Lipídeos , Plasmodium falciparum/ultraestrutura , Plastídeos/ultraestrutura
2.
J Cell Sci ; 123(Pt 4): 544-54, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20086045

RESUMO

Eukaryotic flagella and cilia are surrounded by a membrane that is continuous with, but distinct from, the rest of the plasma membrane. In Leishmania parasites, the inner leaflet of the flagellar membrane is coated with the acylated membrane protein, SMP-1. Here, we provide evidence that SMP-1 stabilizes the flagellar membrane and is required for flagella elongation and function. The expression and flagella targeting of SMP-1 is tightly associated with flagella elongation during amastigote to promastigote differentiation. Deletion of the genes encoding SMP-1 and the flagellar pocket protein SMP-2, led to the production of short flagella and defects in motility. Alterations in the physical properties of the smp-1/smp-2(-/-) flagellar membrane were suggested by: (1) the accumulation of membrane vesicles in the flagellar matrix, and (2) further retraction of flagella following partial inhibition of sterol and sphingolipid biosynthesis. The flagella phenotype of the smp-1/smp-2(-/-) null mutant was reversed by re-expression of SMP-1, but not SMP-2. SMP-1 contains a jelly-roll beta-sheet structure that is probably conserved in all SMP proteins, and forms stable homo-oligomers in vivo. We propose that the SMP-1 coat generates and/or stabilizes sterol- and sphingolipid-rich domains in the flagellar membrane.


Assuntos
Flagelos/fisiologia , Leishmania major/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Protozoários/fisiologia , Sequência de Bases , Primers do DNA/genética , DNA de Protozoário/genética , Flagelos/ultraestrutura , Deleção de Genes , Genes de Protozoários , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Leishmania major/ultraestrutura , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Movimento/fisiologia , Mutação , Ressonância Magnética Nuclear Biomolecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
3.
Eukaryot Cell ; 8(1): 128-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996983

RESUMO

Live cell imaging of human malaria parasites Plasmodium falciparum during gametocytogenesis revealed that the apicoplast does not grow, whereas the mitochondrion undergoes remarkable morphological development. A close connection of the two organelles is consistently maintained. The apicoplast and mitochondrion are not components of the male gametes, suggesting maternal inheritance.


Assuntos
Células Germinativas/fisiologia , Malária Falciparum/parasitologia , Mitocôndrias/metabolismo , Plasmodium falciparum/fisiologia , Plastídeos/metabolismo , Animais , Feminino , Gametogênese , Células Germinativas/citologia , Humanos , Masculino , Mitocôndrias/genética , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plastídeos/genética , Especificidade da Espécie
4.
Eukaryot Cell ; 7(8): 1256-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18515754

RESUMO

The adaptor protein-1 (AP-1) complex is involved in membrane transport between the Golgi apparatus and endosomes. In the protozoan parasite Leishmania mexicana mexicana, the AP-1 mu1 and sigma1 subunits are not required for growth at 27 degrees C but are essential for infectivity in the mammalian host. In this study, we have investigated the function of these AP-1 subunits in order to understand the molecular basis for this loss of virulence. The mu1 and sigma1 subunits were localized to late Golgi and endosome membranes of the major parasite stages. Parasite mutants lacking either AP-1 subunit lacked obvious defects in Golgi structure, endocytosis, or exocytic transport. However, these mutants displayed reduced rates of endosome-to-lysosome transport and accumulated fragmented, sterol-rich lysosomes. Defects in flagellum biogenesis were also evident in nondividing promastigote stages, and this phenotype was exacerbated by inhibitors of sterol and sphingolipid biosynthesis. Furthermore, both AP-1 mutants were hypersensitive to elevated temperature and perturbations in membrane lipid composition. The pleiotropic requirements for AP-1 in membrane trafficking and temperature stress responses explain the loss of virulence of these mutants in the mammalian host.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Flagelos/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Leishmania mexicana/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lisossomos/metabolismo , Adaptação Fisiológica/fisiologia , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/genética , Animais , Temperatura Corporal/fisiologia , Endossomos/metabolismo , Endossomos/ultraestrutura , Flagelos/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Resposta ao Choque Térmico/fisiologia , Homeostase/fisiologia , Leishmania mexicana/genética , Leishmania mexicana/ultraestrutura , Lisossomos/ultraestrutura , Mamíferos/parasitologia , Mamíferos/fisiologia , Lipídeos de Membrana/metabolismo , Mutação/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Esteróis/metabolismo
5.
Infect Immun ; 75(7): 3621-32, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17470539

RESUMO

Red blood cells infected with Plasmodium falciparum (iRBCs) have been shown to modulate maturation of human monocyte-derived dendritic cells (DCs), interfering with their ability to activate T cells. Interaction between Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and CD36 expressed by DCs is the proposed mechanism, but we show here that DC modulation does not require CD36 binding, PfEMP1, or contact between DCs and infected RBCs and depends on the iRBC dose. iRBCs expressing a PfEMP1 variant that binds chondroitin sulfate A (CSA) but not CD36 were phagocytosed, inhibited lipopolysaccharide (LPS)-induced phenotypic maturation and cytokine secretion, and abrogated the ability of DCs to stimulate allogeneic T-cell proliferation. CD36- and CSA-binding iRBCs showed comparable inhibition. P. falciparum lines rendered deficient in PfEMP1 expression by targeted gene knockout or knockdown also inhibited LPS-induced phenotypic maturation, and separation of DCs and iRBCs in transwells showed that inhibition was not contact dependent. Inhibition was observed at an iRBC:DC ratio of 100:1 but not at a ratio of 10:1. High doses of iRBCs were associated with apoptosis of DCs, which was not activation induced. Lower doses of iRBCs stimulated DC maturation sufficient to activate autologous T-cell proliferation. In conclusion, modulation of DC maturation by P. falciparum is dose dependent and does not require interaction between PfEMP1 and CD36. Inhibition and apoptosis of DCs by high-dose iRBCs may or may not be physiological. However, our observation that low-dose iRBCs initiate functional DC maturation warrants reevaluation and further investigation of DC interactions with blood-stage P. falciparum.


Assuntos
Antígenos CD36/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Eritrócitos/parasitologia , Malária Falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Células CHO , Adesão Celular , Células Cultivadas , Sulfatos de Condroitina/metabolismo , Técnicas de Cocultura , Cricetinae , Cricetulus , Células Dendríticas/fisiologia , Eritrócitos/fisiologia , Humanos , Ativação Linfocitária , Malária Falciparum/parasitologia , Fagocitose , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Linfócitos T/imunologia
6.
Int J Parasitol ; 36(14): 1499-514, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17011565

RESUMO

The single mitochondrion of kinetoplastids divides in synchrony with the nucleus and plays a crucial role in cell division. However, despite its importance and potential as a drug target, the mechanism of mitochondrial division and segregation and the molecules involved are only partly understood. In our quest to identify novel mitochondrial proteins in Leishmania, we constructed a hidden Markov model from the targeting motifs of known mitochondrial proteins as a tool to search the Leishmania major genome. We show here that one of the 17 proteins of unknown function that we identified, designated mitochondrial protein X (MIX), is an oligomeric protein probably located in the inner membrane and expressed throughout the Leishmania life cycle. The MIX gene appears to be essential. Moreover, even deletion of one allele from L. major led to abnormalities in cell morphology, mitochondrial segregation and, importantly, to loss of virulence. MIX is unique to kinetoplastids but its heterologous expression in Saccharomyces cerevisiae produced defects in mitochondrial morphology. Our data show that a number of mitochondrial proteins are unique to kinetoplastids and some, like MIX, play a central role in mitochondrial segregation and cell division, as well as virulence.


Assuntos
Leishmania major/genética , Proteínas Mitocondriais/genética , Sequência de Aminoácidos , Animais , Divisão Celular/genética , Deleção de Genes , Genoma de Protozoário/genética , Kinetoplastida/química , Kinetoplastida/genética , Kinetoplastida/ultraestrutura , Leishmania major/química , Leishmania major/ultraestrutura , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/metabolismo , Estágios do Ciclo de Vida , Cadeias de Markov , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura/métodos , Mitocôndrias/química , Mitocôndrias/genética , Membranas Mitocondriais/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Trypanosoma/química , Trypanosoma/genética , Trypanosoma/ultraestrutura , Virulência/genética
7.
Proc Natl Acad Sci U S A ; 103(25): 9572-7, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16760253

RESUMO

Malaria parasites contain a nonphotosynthetic plastid homologous to chloroplasts of plants. The parasite plastid synthesizes fatty acids, heme, iron sulfur clusters and isoprenoid precursors and is indispensable, making it an attractive target for antiparasite drugs. How parasite plastid biosynthetic pathways are fuelled in the absence of photosynthetic capture of energy and carbon was not clear. Here, we describe a pair of parasite transporter proteins, PfiTPT and PfoTPT, that are homologues of plant chloroplast innermost membrane transporters responsible for moving phosphorylated C3, C5, and C6 compounds across the plant chloroplast envelope. PfiTPT is shown to be localized in the innermost membrane of the parasite plastid courtesy of a cleavable N-terminal targeting sequence. PfoTPT lacks such a targeting sequence, but is shown to localize in the outermost parasite plastid membrane with its termini projecting into the cytosol. We have identified these membrane proteins in the parasite plastid and determined membrane orientation for PfoTPT. PfiTPT and PfoTPT are proposed to act in tandem to transport phosphorylated C3 compounds from the parasite cytosol into the plastid. Thus, the transporters could shunt glycolytic derivatives of glucose scavenged from the host into the plastid providing carbon, reducing equivalents and ATP to power the organelle.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Plasmodium/citologia , Plasmodium/metabolismo , Plastídeos/metabolismo , Animais , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Plasmodium/ultraestrutura , Plastídeos/ultraestrutura
8.
Int J Parasitol ; 35(8): 861-73, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15936761

RESUMO

In eukaryotes, the enzyme GDP-mannose pyrophosphorylase (GDP-MP) is essential for the formation of GDP-mannose, the donor of activated mannose for all glycosylation reactions. Unlike other eukaryotes, where deletion of GDP-mannose pyrophosphorylase is lethal, deletion of this gene in Leishmania mexicana has no effect on viability, but leads to the generation of avirulent parasites. In this study, we show that the null mutants have a perturbed morphology and cytokinesis, retarded growth and increased adherence to the substratum where they form large colonies. The null mutants attach avidly to mouse macrophages, but unlike the wild type organisms, they do not bind to the complement receptor 3 and are slow to induce phagocytosis. Once internalised, they localise to the phagolysosome, but in contrast to wild type organisms which transform into the intracellular amastigote and establish in the macrophage, they are cleared by 24 h in culture and by 5 h in vivo. The null mutants are hypersensitive to human but not mouse complement and to temperature and acidic pH. Surprisingly, in view of the lack of several known host-protective antigens, injection of the mutant parasites into BALB/c mice confers significant and long lasting protection against infection, suggesting that these temperature sensitive mutants are an attractive candidate for a live attenuated vaccine.


Assuntos
Leishmania mexicana/fisiologia , Animais , Anticorpos/imunologia , Adesão Celular/fisiologia , Linhagem Celular , Citocinese/fisiologia , Feminino , Guanosina Difosfato Manose/genética , Interações Hospedeiro-Parasita , Humanos , Concentração de Íons de Hidrogênio , Leishmania mexicana/genética , Leishmania mexicana/crescimento & desenvolvimento , Antígeno de Macrófago 1/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fenótipo , Temperatura , Vacinação/métodos , Virulência
9.
Mol Biochem Parasitol ; 137(1): 13-21, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15279947

RESUMO

The apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are important intracellular organelles and targets of several anti-malarial drugs. In recent years, our group and others have begun to piece together the metabolic pathways of these organelles, with a view to understanding their functions and identifying further anti-malarial targets. This has involved localization of putative organellar proteins using fluorescent reporter proteins such as green fluorescent protein (GFP). A major limitation to such an approach is the difficulties associated with using existing plasmids to genetically modify P. falciparum. In this paper, we present a novel series of P. falciparum transfection vectors based around the Gateway recombinatorial cloning system. Our system makes it considerably easier to construct fluorescent reporter fusion proteins, as well as allowing the use of two selectable markers. Using this approach, we localize proteins involved in isoprenoid biosynthesis and the posttranslational processing of apicoplast-encoded proteins to the apicoplast, and a protein putatively involved in the citric acid cycle to the mitochondrion. To confirm the localization of these proteins, we have developed a new immunofluorescence assay (IFA) protocol using antibodies specific to the apicoplast and mitochondrion. In comparison with published IFA methods, we find that ours maintains considerably better structural preservation, while still allowing sufficient antibody binding as well as preserving reporter protein fluorescence. In summary, we present two important new tools that have enabled us to characterize some of the functions of the apicoplast and mitochondrion, and which will be of use to the wider malaria research community in elucidating the localization of other P. falciparum proteins.


Assuntos
Imunofluorescência/métodos , Vetores Genéticos , Mitocôndrias/química , Organelas/química , Plasmodium falciparum/química , Proteínas de Protozoários/análise , Animais , Fusão Gênica Artificial , Ciclo do Ácido Cítrico , Clonagem Molecular/métodos , Genes Reporter , Organelas/enzimologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes de Fusão , Seleção Genética , Terpenos/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA