Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecology ; 104(3): e3947, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36494323

RESUMO

The movement of plant species across the globe exposes native communities to new species introductions. While introductions are pervasive, two aspects of variability underlie patterns and processes of biological invasions at macroecological scales. First, only a portion of introduced species become invaders capable of substantially impacting ecosystems. Second, species that do become invasive at one location may not be invasive in others; impacts depend on invader abundance and recipient species and conditions. Accounting for these phenomena is essential to accurately understand the patterns of plant invasion and explain the idiosyncratic results reflected in the literature on biological invasions. The lack of community-level richness and the abundance of data spanning broad scales and environmental conditions have until now hindered our understanding of invasions at a macroecological scale. To address this limitation, we leveraged quantitative surveys of plant communities in the USA and integrated and harmonized nine datasets into the Standardized Plant Community with Introduced Status (SPCIS) database. The database contains 14,056 unique taxa identified within 83,391 sampling units, of which 52.6% have at least one introduced species. The SPCIS database includes comparable information on plant species occurrence, abundance, and native status across the 50 U.S. States and Puerto Rico. SPCIS can be used to answer macro-scale questions about native plant communities and interactions with invasive plants. There are no copyright restrictions on the data, and we ask the users of this dataset to cite this paper, the respective paper(s) corresponding to the dataset sampling design (all references are provided in Data S1: Metadata S1: Class II-B-2), and the references described in Data S1: Metadata S1: Class III-B-4 as applicable to the dataset being utilized.


Assuntos
Ecossistema , Plantas , Espécies Introduzidas , Porto Rico , Biodiversidade
2.
PLoS One ; 15(10): e0241061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33095813

RESUMO

We measured 34 years of plant community change in a degraded oak woodland undergoing ecological management. Management included regular prescribed fire, control of white-tailed deer populations, repeated sowing of a diverse seed mix, and removal of invasive plants. We tracked change with several conservation metrics. Time series analysis showed no significant changes over time in either plant species richness or the Shannon-Weiner diversity index. Floristic Quality Assessment measures-the Floristic Quality Index (FQI), Cover-weighted FQI, and the Mean Coefficient of Conservatism (Mean C)-all increased dramatically over time, such that their values now surpass those of the highest quality representative of this habitat in the region. Cover-weighted FQI had the added benefit of being quick to respond (negatively and positively) to short-term management changes during the study. This sensitivity highlights its utility for adaptive management, enabling timely, data-driven changes to ongoing management regimes. Plant community composition showed striking changes during the study period, as species of high conservation value replaced weedier species. As a group, conservative woodland species are notoriously slow to recover from degradation, making this flora's recovery particularly notable. A mid-study cessation of management immediately stalled the woodland's recovery according to Floristic Quality metrics, but the restoration quickly returned to its positive trajectory with the resumption of management treatments. These results illustrate that impressive plant biodiversity restoration can be achieved, even in highly degraded contemporary oak ecosystems, if ecological management is comprehensive and if it is sustained over time.


Assuntos
Florestas , Quercus , Desenvolvimento Sustentável , Distribuição Animal , Animais , Cervos , Incêndios , Illinois , Espécies Introduzidas , Dispersão Vegetal
3.
Ecol Lett ; 22(8): 1214-1220, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31112014

RESUMO

Invasive, non-native species can have tremendous impacts on biotic communities, where they reduce the abundance and diversity of local species. However, it remains unclear whether impacts of non-native species arise from their high abundance or whether each non-native individual has a disproportionate impact - that is, a higher per-capita effect - on co-occurring species compared to impacts by native species. Using a long-term study of wetlands, we asked how temporal variation in dominant native and non-native plants impacted the abundance and richness of other plants in the recipient community. Non-native plants reached higher abundances than natives and had greater per-capita effects. The abundance-impact relationship between plant abundance and richness was nonlinear. Compared with increasing native abundance, increasing non-native abundance was associated with steeper declines in richness because of greater per-capita effects and nonlinearities in the abundance-impact relationship. Our study supports eco-evolutionary novelty of non-natives as a driver of their outsized impacts on communities.


Assuntos
Espécies Introduzidas , Plantas , Evolução Biológica , Áreas Alagadas
4.
Ecol Appl ; 29(1): e01827, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403308

RESUMO

The anthropogenic degradation of natural ecological communities can cause biodiversity loss in the form of biotic homogenization (i.e., reduced ß-diversity). Biodiversity offsetting practices, such as compensatory wetland mitigation, may inadvertently cause biotic homogenization if they produce locally homogenous or regionally recurring communities. The fact that compensation wetlands often resemble degraded wetlands suggests that potential impacts to ß-diversity are likely. Yet, it is unknown how high-quality, low-quality (degraded), and compensation wetlands compare in terms of ß-diversity. We compared the ß-diversity of high-quality, low-quality, and compensation wetlands at local and regional scales. ß-diversity was quantified as the average distance to group centroids in multivariate space based on pairwise comparisons of community composition. The local spatial structure of ß-diversity was assessed using species turnover across plots. Indicator species analysis was used to describe compositional differences potentially contributing to differences in ß-diversity. Overall, the ß-diversity of compensation sites did not differ from high-quality or low-quality natural wetlands. However, compensation wetlands had a high degree of internal turnover along the hydrological gradient, which culminated in homogenous zones in the wettest areas. Compared to high-quality wetlands, low-quality wetlands had significantly lower ß-diversity at local scales, but significantly greater ß-diversity at regional scales. Indicator species results showed that compensation wetlands were distinguished by low conservation value species typically found in old fields and waste areas. This analysis also indicated that the invasive grass Phalaris arundinacea was indicative of low-quality and compensation wetlands. This species is likely contributing to differing patterns of ß-diversity between high-quality and low-quality wetlands. These results indicate that conclusions regarding ß-diversity depend on scale and scope of analysis. Particularly, the unique architecture of compensation wetlands makes conclusions regarding within-site ß-diversity dependent on the observer's position along the hydrological gradient. Additionally, while we conclude that compensation wetlands are not contributing to biotic homogenization at the regional scale, these wetlands are distinct from both high-quality and low-quality wetlands in their composition and structure. Therefore, assessments of the overall success of wetland mitigation programs should acknowledge the reality of these differences.


Assuntos
Biodiversidade , Áreas Alagadas , Hidrologia
5.
Front Plant Sci ; 8: 767, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28555146

RESUMO

Managing intentional species introductions requires evaluating potential ecological risks. However, it is difficult to weigh costs and benefits when data about interactions between novel species and the communities they are introduced to are scarce. In anticipation of expanded cultivation of perennial biomass crops, we experimentally introduced Miscanthus sinensis and Miscanthus × giganteus (two non-native candidate biomass crops) into two different non-crop habitats (old field and flood-plain forest) to evaluate their establishment success and impact on ambient local communities. We followed these controlled introductions and the composition dynamics of the receiving communities over a 5-year period. Habitats differed widely in adult Miscanthus survival and reproduction potential between species, although seed persistence and seedling emergence were similar in the two biomass crops in both habitats. Few introductions survived in the floodplain forest habitat, and this mortality precluded analyses of their potential impacts there. In old field habitats, proportional survival ranged from 0.3 to 0.4, and plant survival and growth increased with age. However, there was no evidence of biomass crop species effects on community richness or evenness or strong impacts on the resident old field constituents across 5 years. These results suggest that Miscanthus species could establish outside of cultivated fields, but there will likely be a lag in any impacts on the receiving communities. Local North American invasions by M. sinensis and M. sacchariflorus display the potential for Miscanthus species to develop aggressively expanding populations. However, the weak short-term community-level impacts demonstrated in the current study indicate a clear management window in which eradicating species footholds is easily achieved, if they can be detected early enough. Diligent long-term monitoring, detection, and eradication plans are needed to successfully minimize harmful invasions from these biomass crops.

6.
PLoS One ; 11(8): e0160693, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27489959

RESUMO

Floristic Quality Assessment (FQA) is increasingly influential for making land management decisions, for directing conservation policy, and for research. But, the basic ecological properties and limitations of its metrics are ill defined and not well understood-especially those related to sample methods and scale. Nested plot data from a remnant tallgrass prairie sampled annually over a 12-year period, were used to investigate FQA properties associated with species detection rates, species misidentification rates, sample year, and sample grain/area. Plot size had no apparent effect on Mean C (an area's average Floristic Quality level), nor did species detection levels above 65% detection. Simulated species misidentifications only affected Mean C values at greater than 10% in large plots, when the replaced species were randomly drawn from the broader county-wide species pool. Finally, FQA values were stable over the 12-year study, meaning that there was no evidence that the metrics exhibit year effects. The FQA metric Mean C is demonstrated to be robust to varied sample methodologies related to sample intensity (plot size, species detection rate), as well as sample year. These results will make FQA measures even more appealing for informing land-use decisions, policy, and research for two reasons: 1) The sampling effort needed to generate accurate and consistent site assessments with FQA measures is shown to be far lower than what has previously been assumed, and 2) the stable properties and consistent performance of metrics with respect to sample methods will allow for a remarkable level of comparability of FQA values from different sites and datasets compared to other commonly used ecological metrics.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pradaria , Poaceae/crescimento & desenvolvimento
7.
Ecol Appl ; 19(8): 2093-107, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20014581

RESUMO

Temporal trends in attributes of restored ecosystems have been described conceptually as restoration trajectories. Measures describing the maturity or ecological integrity of a restoration site are often assumed to follow monotonically increasing trajectories over time and to eventually reach an asymptote representative of a reference ecosystem. This assumption of simple, predictable restoration trajectories underpins federal and state policies in the United States that mandate wetland restoration as compensation for wetlands damaged during development. We evaluated the validity of this assumption by tracking changes in 11 indicators of floristic integrity, often used to determine legal compliance, in 29 mitigation wetlands. Each indicator was expressed as a percentile relative to the distribution of that indicator among > 100 naturally occurring reference wetlands. Nonlinear regression was used to fit two alternative restoration trajectories to data from each site: an asymptotic (negative exponential) increase in the indicator over time and a peaked (double exponential) relationship. Depending on the particular indicator, between 48% and 76% of sites displayed trends that were at least moderately well described (R2 > 0.5) by one of the two models. Floristic indicators based on species richness, including native richness, number of native genera, and the floristic quality index, rapidly increased to asymptotes exceeding levels in a majority of reference wetlands. In contrast, indicators based on species composition, including mean coefficient of conservatism and relative importance of perennial species, increased very slowly. Thus, some indicators of restoration progress followed increasing trajectories and achieved or surpassed levels equivalent to high-quality reference sites within five years, whereas others appeared destined to either not reach equivalency or to take much longer than mitigation wetlands are typically monitored. Finally, some indicators of restoration progress, such as relative importance of native species, often increased over the first five to 10 years and then declined, which would result in a misleading assessment of progress if based on typical time scales of monitoring. Therefore, the assumption of simple, rapid, and predictable restoration trajectories that underlies wetland mitigation policy is unrealistic.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Desenvolvimento Vegetal , Plantas/classificação , Áreas Alagadas , Biodiversidade , Modelos Biológicos , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 106(36): 15362-7, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706431

RESUMO

Invasive species can quickly transform biological communities due to their high abundance and strong impacts on native species, in part because they can be released from the ecological forces that limit native populations. However, little is known about the long-term dynamics of invasions; do invaders maintain their dominant status over long time spans, or do new ecological and evolutionary forces eventually develop to limit their populations? Alliaria petiolata is a Eurasian species that aggressively invades North American forest understories, in part due to the production of toxic phytochemicals. Here we document a marked decline in its phytotoxin production and a consequent decline in their impact on three native species, across a 50+ year chronosequence of Alliaria petiolata invasion. Genetic evidence suggests that these patterns result from natural selection for decreased phytotoxin production rather than founder effects during introduction and spread. These patterns are consistent with the finding of slowing A. petiolata population growth and rebounding native species abundance across a separate chronosequence in Illinois, U.S. These results suggest that this invader is developing evolutionary limits in its introduced range and highlight the importance of understanding the long-term processes that shape species invasions and their impacts.


Assuntos
Evolução Biológica , Brassicaceae/química , Brassicaceae/crescimento & desenvolvimento , Ecossistema , Toxinas Biológicas/biossíntese , Brassicaceae/genética , Cromatografia Líquida de Alta Pressão , Demografia , Illinois , Dinâmica Populacional , Análise de Regressão , Seleção Genética , Especificidade da Espécie , Fatores de Tempo , Toxinas Biológicas/análise
9.
Ecol Appl ; 16(4): 1351-66, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16937803

RESUMO

Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually, conservative plants were actually more likely to be found in low-BA stands (uplands only). This suggests that floras of historically more open-canopied oak-hickory uplands are being degraded by canopy closure from increasing density of "mesophytic, nonpyrogenic" trees. It also indirectly suggests that recent moderate logging is uncorrelated with floristic conservation values.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Árvores/fisiologia , Demografia , Agricultura Florestal , Illinois
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA