Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814443

RESUMO

AIMS/HYPOTHESIS: Hypoxia-inducible factor prolyl 4-hydroxylase (HIF-P4H) enzymes regulate adaptive cellular responses to low oxygen concentrations. Inhibition of HIF-P4Hs leads to stabilisation of hypoxia-inducible factors (HIFs) and activation of the HIF pathway affecting multiple biological processes to rescue cells from hypoxia. As evidence from animal models suggests that HIF-P4H inhibitors could be used to treat metabolic disorders associated with insulin resistance, we examined whether roxadustat, an HIF-P4H inhibitor approved for the treatment of renal anaemia, would have an effect on glucose metabolism in primary human myotubes. METHODS: Primary skeletal muscle cell cultures, established from biopsies of vastus lateralis muscle from men with normal glucose tolerance (NGT) (n=5) or type 2 diabetes (n=8), were treated with roxadustat. Induction of HIF target gene expression was detected with quantitative real-time PCR. Glucose uptake and glycogen synthesis were investigated with radioactive tracers. Glycolysis and mitochondrial respiration rates were measured with a Seahorse analyser. RESULTS: Exposure to roxadustat stabilised nuclear HIF1α protein expression in human myotubes. Treatment with roxadustat led to induction of HIF target gene mRNAs for GLUT1 (also known as SLC2A1), HK2, MCT4 (also known as SLC16A4) and HIF-P4H-2 (also known as PHD2 or EGLN1) in myotubes from donors with NGT, with a blunted response in myotubes from donors with type 2 diabetes. mRNAs for LDHA, PDK1 and GBE1 were induced to a similar degree in myotubes from donors with NGT or type 2 diabetes. Exposure of myotubes to roxadustat led to a 1.4-fold increase in glycolytic rate in myotubes from men with NGT (p=0.0370) and a 1.7-fold increase in myotubes from donors with type 2 diabetes (p=0.0044), with no difference between the groups (p=0.1391). Exposure to roxadustat led to a reduction in basal mitochondrial respiration in both groups (p<0.01). Basal glucose uptake rates were similar in myotubes from donors with NGT (20.2 ± 2.7 pmol mg-1 min-1) and type 2 diabetes (25.3 ± 4.4 pmol mg-1 min-1, p=0.4205). Treatment with roxadustat enhanced insulin-stimulated glucose uptake in myotubes from donors with NGT (1.4-fold vs insulin-only condition, p=0.0023). The basal rate of glucose incorporation into glycogen was lower in myotubes from donors with NGT (233 ± 12.4 nmol g-1 h-1) than in myotubes from donors with type 2 diabetes (360 ± 40.3 nmol g-1 h-1, p=0.0344). Insulin increased glycogen synthesis by 1.9-fold (p=0.0025) in myotubes from donors with NGT, whereas roxadustat did not affect their basal or insulin-stimulated glycogen synthesis. Insulin increased glycogen synthesis by 1.7-fold (p=0.0031) in myotubes from donors with type 2 diabetes. While basal glycogen synthesis was unaffected by roxadustat, pretreatment with roxadustat enhanced insulin-stimulated glycogen synthesis in myotubes from donors with type 2 diabetes (p=0.0345). CONCLUSIONS/INTERPRETATION: Roxadustat increases glycolysis and inhibits mitochondrial respiration in primary human myotubes regardless of diabetes status. Roxadustat may also improve insulin action on glycogen synthesis in myotubes from donors with type 2 diabetes.

2.
Pharmacol Rev ; 75(5): 959-978, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37127349

RESUMO

The endoplasmic reticulum (ER) is the largest organelle of the cell, composed of a continuous network of sheets and tubules, and is involved in protein, calcium (Ca2+), and lipid homeostasis. In neurons, the ER extends throughout the cell, both somal and axodendritic compartments, and is highly important for neuronal functions. A third of the proteome of a cell, secreted and membrane-bound proteins, are processed within the ER lumen and most of these proteins are vital for neuronal activity. The brain itself is high in lipid content, and many structural lipids are produced, in part, by the ER. Cholesterol and steroid synthesis are strictly regulated in the ER of the blood-brain barrier protected brain cells. The high Ca2+ level in the ER lumen and low cytosolic concentration is needed for Ca2+-based intracellular signaling, for synaptic signaling and Ca2+ waves, and for preparing proteins for correct folding in the presence of high Ca2+ concentrations to cope with the high concentrations of extracellular milieu. Particularly, ER Ca2+ is controlled in axodendritic areas for proper neurito- and synaptogenesis and synaptic plasticity and remodeling. In this review, we cover the physiologic functions of the neuronal ER and discuss it in context of common neurodegenerative diseases, focusing on pharmacological regulation of ER Ca2+ Furthermore, we postulate that heterogeneity of the ER, its protein folding capacity, and ensuring Ca2+ regulation are crucial factors for the aging and selective vulnerability of neurons in various neurodegenerative diseases. SIGNIFICANCE STATEMENT: Endoplasmic reticulum (ER) Ca2+ regulators are promising therapeutic targets for degenerative diseases for which efficacious drug therapies do not exist. The use of pharmacological probes targeting maintenance and restoration of ER Ca2+ can provide restoration of protein homeostasis (e.g., folding of complex plasma membrane signaling receptors) and slow down the degeneration process of neurons.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio da Dieta/metabolismo , Lipídeos , Sinalização do Cálcio
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(11): 159219, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35981704

RESUMO

The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.


Assuntos
Palmitatos , Proteostase , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacologia , Tapsigargina/metabolismo , Tapsigargina/farmacologia
4.
Eur J Cell Biol ; 100(7-8): 151180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653930

RESUMO

The endoplasmic reticulum (ER) is a large, single-copy, membrane-bound organelle that comprises an elaborate 3D network of diverse structural subdomains, including highly curved tubules, flat sheets, and parts that form contacts with nearly every other organelle. The dynamic and complex organization of the ER poses a major challenge on understanding how its functioning - maintenance of the structure, distribution of its functions and communication with other organelles - is orchestrated. In this study, we resolved a unique localization profile within the ER network for several resident ER proteins representing a broad range of functions associated with the ER using immuno-electron microscopy and calculation of a relative labeling index (RLI). Our results demonstrated the effect of changing cellular environment on protein localization and highlighted the importance of correct protein expression level when analyzing its localization at subdomain resolution. We present new software tools for anonymization of images for blind analysis and for quantitative assessment of membrane contact sites (MCSs) from thin section transmission electron microscopy micrographs. The analysis of ER-mitochondria contacts suggested the presence of at least three different types of MCSs that responded differently to changes in cellular lipid loading status.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Microscopia Eletrônica , Mitocôndrias/metabolismo , Transporte Proteico
5.
Cells ; 10(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919188

RESUMO

The endoplasmic reticulum (ER) is a multipurpose organelle comprising dynamic structural subdomains, such as ER sheets and tubules, serving to maintain protein, calcium, and lipid homeostasis. In neurons, the single ER is compartmentalized with a careful segregation of the structural subdomains in somatic and neurite (axodendritic) regions. The distribution and arrangement of these ER subdomains varies between different neuronal types. Mutations in ER membrane shaping proteins and morphological changes in the ER are associated with various neurodegenerative diseases implying significance of ER morphology in maintaining neuronal integrity. Specific neurons, such as the highly arborized dopaminergic neurons, are prone to stress and neurodegeneration. Differences in morphology and functionality of ER between the neurons may account for their varied sensitivity to stress and neurodegenerative changes. In this review, we explore the neuronal ER and discuss its distinct morphological attributes and specific functions. We hypothesize that morphological heterogeneity of the ER in neurons is an important factor that accounts for their selective susceptibility to neurodegeneration.


Assuntos
Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Doenças Neurodegenerativas , Plasticidade Neuronal , Neurônios , Animais , Retículo Endoplasmático/patologia , Homeostase , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia
6.
Biol Reprod ; 91(3): 69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25122060

RESUMO

We mapped global changes in miRNA and mRNA profiles spanning the first wave of spermatogenesis using prepubertal (Postnatal Day 8 [P8]), pubertal (P16), and adolescent (P24) Mus musculus testes and identified the differential expression of 67 miRNAs and 8226 mRNAs. These two data sets were integrated into miRNA-dependent regulatory networks based on miRWalk predictions. In a network representing the P8 to P16 transition, downregulation of four miRNAs and upregulation of 19 miRNAs were linked with 81 upregulated target mRNAs and 228 downregulated target mRNAs, respectively. Furthermore, during the P16 to P24 transition, two miRNAs were downregulated, and eight miRNAs were upregulated, which linked with 64 upregulated mRNAs and 389 downregulated mRNAs, respectively. Only three of the miRNAs present in the network (miR-34b-5p, miR-34c, and miR-449a) showed a progressive increase from P8 through P16 to P24, while the remaining miRNAs in the network showed statistically significant changes in their levels either during the P8 to P16 transition or during the P16 to P24 transition. Analysis of the chromosomal location of these differentially expressed miRNAs showed that 14 out of 25 miRNAs upregulated from P8 to P16, and 18 out of 40 miRNAs upregulated from P8 to P24 were X-linked. This is suggestive of their escape from meiotic sex chromosome inactivation and postmeiotic sex chromatin. This integrated network of miRNA-level and mRNA-level changes in mouse testis during the first wave of spermatogenesis is expected to build a base for evaluating the role of miRNA-mediated gene expression regulation in maturing mammalian testis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Maturidade Sexual , Espermatogênese , Testículo/metabolismo , Animais , Western Blotting , Análise por Conglomerados , Bases de Dados de Ácidos Nucleicos , Regulação para Baixo , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Epitélio Seminífero/citologia , Epitélio Seminífero/crescimento & desenvolvimento , Epitélio Seminífero/metabolismo , Testículo/citologia , Testículo/crescimento & desenvolvimento , Regulação para Cima
7.
Zoology (Jena) ; 117(5): 319-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25160003

RESUMO

Whereas in all other vertebrates the Müllerian ducts of genetic males are aborted during development, under the influence of Müllerian-inhibiting substance, in the caecilian amphibians they are retained as a pair of functional glands. It has long been speculated that the Müllerian gland might be the male accessory reproductive gland but there has been no direct evidence to this effect. The present study was undertaken to determine whether the caecilian Müllerian gland secretory proteins would bear antigenic similarity to secretory proteins of the prostate gland and/or the seminal vesicles of a mammal. The secretory proteins of the Müllerian gland of Ichthyophis tricolor were evaluated for cross-reactivity with antisera raised against rat ventral prostate and seminal vesicle secretory proteins, adopting SDS-PAGE, two-dimensional electrophoresis and immunoblot techniques. Indeed there was a cross-reaction of five Müllerian gland secretory protein fractions with prostatic protein antiserum and of three with seminal vesicle protein antiserum. A potential homology exists because in mammals the middle group of the prostate primordia is derived from a diverticulum of the Müllerian duct. Thus this study, by providing evidence for expression of prostatic and seminal vesicle proteins in the Müllerian gland, substantiates the point that in caecilians the Müllerian glands are the male accessory reproductive glands.


Assuntos
Anfíbios/anatomia & histologia , Anfíbios/metabolismo , Glândulas Exócrinas/fisiologia , Animais , Glândulas Exócrinas/anatomia & histologia , Glândulas Exócrinas/metabolismo , Soros Imunes/metabolismo , Immunoblotting , Masculino , Próstata/metabolismo , Ratos , Glândulas Seminais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA