Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(3): 188-190, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236614
2.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291057

RESUMO

Smoking is one of the most prominent addictions of the modern world, and one of the leading preventable causes of death worldwide. Although the number of tobacco smokers is believed to be at a historic low, electronic cigarette use has been on a dramatic rise over the past decades. Used as a replacement for cigarette smoking, electronic cigarettes were thought to reduce the negative effects of burning tobacco. Nonetheless, the delivery of nicotine by electronic cigarettes, the most prominent component of cigarette smoke (CS) is still delivering the same negative outcomes, albeit to a lesser extent than CS. Smoking has been shown to affect both the structural and functional aspects of major organs, including the lungs and vasculature. Although the deleterious effects of smoking on these organs individually is well-known, it is likely that the adverse effects of smoking on these organs will have long-lasting effects on the cardiovascular system. In addition, smoking has been shown to play an independent role in the homeostasis of the immune system, leading to major sequela. Both the adaptive and the innate immune system have been explored regarding CS and have been demonstrated to be altered in a way that promotes inflammatory signals, leading to an increase in autoimmune diseases, inflammatory diseases, and cancer. Although the mechanism of action of CS has not been fully understood, disease pathways have been explored in both branches of the immune system. The pathophysiologically altered immune system during smoking and its correlation with cardiovascular diseases is not fully understood. Here we highlight some of the important pathological mechanisms that involve cigarette smoking and its many components on cardiovascular disease and the immune systems in order to have a better understanding of the mechanisms at play.


Assuntos
Doenças Cardiovasculares , Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina , Fumar Cigarros/efeitos adversos , Nicotina/efeitos adversos , Nicotiana , Doenças Cardiovasculares/etiologia , Fumar/efeitos adversos
5.
Cardiovasc Res ; 118(12): 2596-2609, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34534269

RESUMO

Neutrophils, the most abundant of all leucocytes and the first cells to arrive at the sites of sterile inflammation/injury act as a double-edged sword. On one hand, they inflict a significant collateral damage to the tissues and on the other hand, they help facilitate wound healing by a number of mechanisms. Recent studies have drastically changed the perception of neutrophils from being simple one-dimensional cells with an unrestrained mode of action to a cell type that display maturity and complex behaviour. It is now recognized that neutrophils are transcriptionally active and respond to plethora of signals by deploying a wide variety of cargo to influence the activity of other cells in the vicinity. Neutrophils can regulate macrophage behaviour, display innate immune memory, and play a major role in the resolution of inflammation in a context-dependent manner. In this review, we provide an update on the factors that regulate neutrophil production and the emerging dichotomous role of neutrophils in the context of cardiovascular diseases, particularly in atherosclerosis and the ensuing complications, myocardial infarction, and heart failure. Deciphering the complex behaviour of neutrophils during inflammation and resolution may provide novel insights and in turn facilitate the development of potential therapeutic strategies to manage cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Inflamação/metabolismo , Neutrófilos/metabolismo , Fagocitose
6.
Circulation ; 145(1): 31-44, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788059

RESUMO

BACKGROUND: Acute myocardial infarction (MI) results in overzealous production and infiltration of neutrophils to the ischemic heart. This is mediated in part by granulopoiesis induced by the S100A8/A9-NLRP3-IL-1ß signaling axis in injury-exposed neutrophils. Despite the transcriptional upregulation of the NLRP3 (Nod Like Receptor Family Pyrin Domain-Containing 3) inflammasome and associated signaling components in neutrophils, the serum levels of IL-1ß (interleukin-1ß), the effector molecule in granulopoiesis, were not affected by MI, suggesting that IL-1ß is not released systemically. We hypothesize that IL-1ß is released locally within the bone marrow (BM) by inflammasome-primed and reverse-migrating neutrophils. METHODS: Using a combination of time-dependent parabiosis and flow cytometry techniques, we first characterized the migration patterns of different blood cell types across the parabiotic barrier. We next induced MI in parabiotic mice by permanent ligation of the left anterior descending artery and examined the ability of injury-exposed neutrophils to permeate the parabiotic barrier and induce granulopoiesis in noninfarcted parabionts. Last, using multiple neutrophil adoptive and BM transplant studies, we studied the molecular mechanisms that govern reverse migration and retention of the primed neutrophils, IL-1ß secretion, and granulopoiesis. Cardiac function was assessed by echocardiography. RESULTS: MI promoted greater accumulation of the inflammasome-primed neutrophils in the BM. Introducing a time-dependent parabiotic barrier to the free movement of neutrophils inhibited their ability to stimulate granulopoiesis in the noninfarcted parabionts. Previous priming of the NLRP3 inflammasome is not a prerequisite, but the presence of a functional CXCR4 (C-X-C-motif chemokine receptor 4) on the primed-neutrophils and elevated serum S100A8/A9 levels are necessary for homing and retention of the reverse-migrating neutrophils. In the BM, the primed-neutrophils secrete IL-1ß through formation of gasdermin D pores and promote granulopoiesis. Pharmacological and genetic strategies aimed at the inhibition of neutrophil homing or release of IL-1ß in the BM markedly suppressed MI-induced granulopoiesis and improved cardiac function. CONCLUSIONS: Our data reveal a new paradigm of how circulatory cells establish a direct communication between organs by delivering signaling molecules (eg, IL-1ß) directly at the sites of action rather through systemic release. We suggest that this pathway may exist to limit the off-target effects of systemic IL-1ß release.


Assuntos
Granulócitos/metabolismo , Inflamassomos/metabolismo , Infarto do Miocárdio/complicações , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
7.
Arterioscler Thromb Vasc Biol ; 41(3): 1167-1178, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33441028

RESUMO

OBJECTIVE: People with diabetes are at a significantly higher risk of cardiovascular disease, in part, due to accelerated atherosclerosis. Diabetic subjects have increased number of platelets that are activated, more reactive, and respond suboptimally to antiplatelet therapies. We hypothesized that reducing platelet numbers by inducing their premature apoptotic death would decrease atherosclerosis. Approach and Results: This was achieved by targeting the antiapoptotic protein Bcl-xL (B-cell lymphoma-extra large; which is essential for platelet viability) via distinct genetic and pharmacological approaches. In the former, we transplanted bone marrow from mice carrying the Tyr15 to Cys loss of function allele of Bcl-x (known as Bcl-xPlt20) or wild-type littermate controls into atherosclerotic-prone Ldlr+/- mice made diabetic with streptozotocin and fed a Western diet. Reduced Bcl-xL function in hematopoietic cells significantly decreased platelet numbers, exclusive of other hematologic changes. This led to a significant reduction in atherosclerotic lesion formation in Bcl-xPlt20 bone marrow transplanted Ldlr+/- mice. To assess the potential therapeutic relevance of reducing platelets in atherosclerosis, we next targeted Bcl-xL with a pharmacological strategy. This was achieved by low-dose administration of the BH3 (B-cell lymphoma-2 homology domain 3) mimetic, ABT-737 triweekly, in diabetic Apoe-/- mice for the final 6 weeks of a 12-week study. ABT-737 normalized platelet numbers along with platelet and leukocyte activation to that of nondiabetic controls, significantly reducing atherosclerosis while promoting a more stable plaque phenotype. CONCLUSIONS: These studies suggest that selectively reducing circulating platelets, by targeting Bcl-xL to promote platelet apoptosis, can reduce atherosclerosis and lower cardiovascular disease risk in diabetes. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Aterosclerose/sangue , Aterosclerose/complicações , Plaquetas/patologia , Angiopatias Diabéticas/sangue , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Aterosclerose/prevenção & controle , Compostos de Bifenilo/administração & dosagem , Plaquetas/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Feminino , Humanos , Leucócitos/patologia , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrofenóis/administração & dosagem , Piperazinas/administração & dosagem , Contagem de Plaquetas , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Risco , Sulfonamidas/administração & dosagem
8.
Clin Transl Immunology ; 9(12): e1222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363732

RESUMO

Macrophages are the first immune cells in the developing embryo and have a central role in organ development, homeostasis, immunity and repair. Over the last century, our understanding of these cells has evolved from being thought of as simple phagocytic cells to master regulators involved in governing a myriad of cellular processes. A better appreciation of macrophage biology has been matched with a clearer understanding of their diverse origins and the flexibility of their metabolic and transcriptional machinery. The understanding of the classical mononuclear phagocyte system in its original form has now been expanded to include the embryonic origin of tissue-resident macrophages. A better knowledge of the intrinsic similarities and differences between macrophages of embryonic or monocyte origin has highlighted the importance of ontogeny in macrophage dysfunction in disease. In this review, we provide an update on origin and classification of tissue macrophages, the mechanisms of macrophage specialisation and their role in health and disease. The importance of the macrophage niche in providing trophic factors and a specialised environment for macrophage differentiation and specialisation is also discussed.

11.
Pharmacol Res ; 161: 105212, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32991974

RESUMO

Elevated neutrophil count is associated with higher risk of major adverse cardiac events including myocardial infarction and early development of heart failure. Neutrophils contribute to cardiac damage through a number of mechanisms, including attraction of other immune cells and release of inflammatory mediators. Recently, a number of independent studies have reported a causal role for neutrophil-derived alarmins (i.e. S100A8/A9) in inducing inflammation and cardiac injury following myocardial infarction (MI). Furthermore, a positive correlation between serum S100A8/A9 levels and major adverse cardiac events (MACE) in MI patients was also observed implying that targeting neutrophils or their inflammatory cargo could be beneficial in reducing heart failure. However, contradictory to this idea, neutrophils and neutrophil-derived S100A8/A9 also seem to play a vital role in the resolution of inflammation. Thus, a better understanding of how neutrophils balance these seemingly contrasting functions would allow us to develop effective therapies that preserve the inflammation-resolving function while restricting the damage caused by inflammation. In this review, we specifically discuss the mechanisms behind neutrophil-derived S100A8/A9 in promoting inflammation and resolution in the context of MI. We also provide a perspective on how neutrophils could be potentially targeted to ameliorate cardiac inflammation and the ensuing damage.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/imunologia , Sistema Cardiovascular/patologia , Morte Celular , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Mielopoese , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Transdução de Sinais
12.
Adv Clin Chem ; 98: 173-231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32564786

RESUMO

The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.


Assuntos
Inflamação/metabolismo , Proteínas S100/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Humanos , Inflamação/tratamento farmacológico
13.
Clin Sci (Lond) ; 134(12): 1399-1401, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32556177

RESUMO

In volume 133 issue 4 of Clinical Science, Liu et al. showed that neutrophils release extracellular traps (NETs) in the setting of diabetes which acts as a stimulus for NLRP3 inflammasome activation in macrophages to promote IL1ß-dependent exacerbation of inflammation. They also provide evidence to show that degrading NETs improves the wound healing process. These findings provide an insight into how NETs communicate with other cells in the vicinity (e.g. macrophages) to exacerbate the inflammatory response. Most importantly, they provide novel avenues to improve wound healing process such as diabetic foot ulcers (DFUs) by targeting NETs.


Assuntos
Pé Diabético/metabolismo , Pé Diabético/patologia , Armadilhas Extracelulares/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Animais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cicatrização
14.
Circulation ; 141(13): 1080-1094, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31941367

RESUMO

BACKGROUND: Myocardial infarction (MI) triggers myelopoiesis, resulting in heightened production of neutrophils. However, the mechanisms that sustain their production and recruitment to the injured heart are unclear. METHODS: Using a mouse model of the permanent ligation of the left anterior descending artery and flow cytometry, we first characterized the temporal and spatial effects of MI on different myeloid cell types. We next performed global transcriptome analysis of different cardiac cell types within the infarct to identify the drivers of the acute inflammatory response and the underlying signaling pathways. Using a combination of genetic and pharmacological strategies, we identified the sequelae of events that led to MI-induced myelopoiesis. Cardiac function was assessed by echocardiography. The association of early indexes of neutrophilia with major adverse cardiovascular events was studied in a cohort of patients with acute MI. RESULTS: Induction of MI results in rapid recruitment of neutrophils to the infarct, where they release specific alarmins, S100A8 and S100A9. These alarmins bind to the Toll-like receptor 4 and prime the nod-like receptor family pyrin domain-containing 3 inflammasome in naïve neutrophils and promote interleukin-1ß secretion. The released interleukin-1ß interacts with its receptor (interleukin 1 receptor type 1) on hematopoietic stem and progenitor cells in the bone marrow and stimulates granulopoiesis in a cell-autonomous manner. Genetic or pharmacological strategies aimed at disruption of S100A8/A9 and their downstream signaling cascade suppress MI-induced granulopoiesis and improve cardiac function. Furthermore, in patients with acute coronary syndrome, higher neutrophil count on admission and after revascularization correlates positively with major adverse cardiovascular disease outcomes. CONCLUSIONS: Our study provides novel evidence for the primary role of neutrophil-derived alarmins (S100A8/A9) in dictating the nature of the ensuing inflammatory response after myocardial injury. Therapeutic strategies aimed at disruption of S100A8/A9 signaling or their downstream mediators (eg, nod-like receptor family pyrin domain-containing 3 inflammasome, interleukin-1ß) in neutrophils suppress granulopoiesis and may improve cardiac function in patients with acute coronary syndrome.


Assuntos
Calgranulina A/metabolismo , Granulócitos/metabolismo , Infarto do Miocárdio/sangue , Neutrófilos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
15.
Eur Heart J ; 41(44): 4271-4282, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31891403

RESUMO

The cardiovascular and haematopoietic systems have fundamental inter-relationships during development, as well as in health and disease of the adult organism. Although haematopoietic stem cells (HSCs) emerge from a specialized haemogenic endothelium in the embryo, persistence of haemangioblasts in adulthood is debated. Rather, the vast majority of circulating stem cells (CSCs) is composed of bone marrow-derived HSCs and the downstream haematopoietic stem/progenitors (HSPCs). A fraction of these cells, known as endothelial progenitor cells (EPCs), has endothelial specification and vascular tropism. In general, the levels of HSCs, HSPCs, and EPCs are considered indicative of the endogenous regenerative capacity of the organism as a whole and, particularly, of the cardiovascular system. In the last two decades, the research on CSCs has focused on their physiologic role in tissue/organ homoeostasis, their potential application in cell therapies, and their use as clinical biomarkers. In this review, we provide background information on the biology of CSCs and discuss in detail the clinical implications of changing CSC levels in patients with cardiovascular risk factors or established cardiovascular disease. Of particular interest is the mounting evidence available in the literature on the close relationships between reduced levels of CSCs and adverse cardiovascular outcomes in different cohorts of patients. We also discuss potential mechanisms that explain this association. Beyond CSCs' ability to participate in cardiovascular repair, levels of CSCs need to be interpreted in the context of the broader connections between haematopoiesis and cardiovascular function, including the role of clonal haematopoiesis and inflammatory myelopoiesis.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Células Progenitoras Endoteliais , Adulto , Hematopoese , Células-Tronco Hematopoéticas , Humanos
16.
Front Cell Dev Biol ; 7: 315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850349

RESUMO

Exosomes are nanoscale membrane-bound extracellular vesicles secreted by most eukaryotic cells in the body that facilitates intercellular communication. Exosomes carry several signaling biomolecules, including miRNA, proteins, enzymes, cell surface receptors, growth factors, cytokines and lipids that can modulate target cell biology and function. Due to these capabilities, exosomes have emerged as novel intercellular signaling mediators in both homeostasis and pathophysiological conditions. Recent studies document that exosomes (both circulating or released from heart tissue) have been actively involved in cardiac remodeling in response to stressors. Also, exosomes released from progenitor/stem cells have protective effects in heart diseases and shown to have regenerative potential in the heart. In this review we discuss- the critical role played by circulating exosomes released from various tissues and from cells within the heart in cardiac health; the gap in knowledge that needs to be addressed to promote future research; and exploitation of recent advances in exosome engineering to develop novel therapy.

17.
Circ Res ; 125(11): 969-988, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31610731

RESUMO

RATIONALE: There is incomplete knowledge of the impact of bone marrow cells on the gut microbiome and gut barrier function. OBJECTIVE: We postulated that diabetes mellitus and systemic ACE2 (angiotensin-converting enzyme 2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. METHODS AND RESULTS: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from wild-type, ACE2-/y, Akita (type 1 diabetes mellitus), and ACE2-/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and bone marrow cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2-/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells, but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2-/y-Akita mice demonstrated a marked increase in peptidoglycan-producing bacteria. When compared with control cohorts treated with saline, intraperitoneal administration of myeloid angiogenic cells significantly decreased the microbiome gene expression associated with peptidoglycan biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of peptidoglycan and FABP-2 (intestinal fatty acid-binding protein 2) were observed in plasma of human subjects with type 1 diabetes mellitus (n=21) and type 2 diabetes mellitus (n=23) compared with nondiabetic controls (n=23). Using human retinal endothelial cells, we determined that peptidoglycan activates a noncanonical TLR-2 (Toll-like receptor 2) associated MyD88 (myeloid differentiation primary response protein 88)-ARNO (ADP-ribosylation factor nucleotide-binding site opener)-ARF6 (ADP-ribosylation factor 6) signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of peptidoglycan on the endothelium. CONCLUSIONS: We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2-/y-Akita mice can be favorably impacted by exogenous administration of myeloid angiogenic cells.


Assuntos
Bactérias/metabolismo , Transplante de Medula Óssea , Permeabilidade Capilar , Diabetes Mellitus Tipo 2/cirurgia , Microbioma Gastrointestinal , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/microbiologia , Intestino Delgado/irrigação sanguínea , Intestino Delgado/microbiologia , Neovascularização Fisiológica , Peptidil Dipeptidase A/deficiência , Fator 6 de Ribosilação do ADP , Junções Aderentes/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Disbiose , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/enzimologia , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidoglicano/metabolismo , Peptidil Dipeptidase A/genética , Recuperação de Função Fisiológica
18.
Methods Mol Biol ; 1929: 739-754, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30710308

RESUMO

S100A8/A9 represents a novel biomarker and therapeutic target in sterile inflammatory diseases. Among the various S100 proteins, S100A8 and S100A9 have been shown to be the most important of all the damage-associated molecular pattern (DAMP) proteins in sterile inflammatory conditions such as diabetes, cardiovascular disease, autoimmune disorders, etc. We present here methods to quantify S100A8/A9 expression in various tissues in mouse models of myocardial infarction (MI) using flow cytometry (FC), immunofluorescence, quantitative real-time polymerase chain reaction (q-RT-PCR), and enzyme-linked immunosorbent assays (ELISA).


Assuntos
Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Sangue/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Humanos , Camundongos , Monócitos/metabolismo , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Neutrófilos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
19.
PLoS One ; 12(11): e0188981, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190815

RESUMO

Aldose reductase (AR: human, AKR1B1; mouse, AKR1B3), the first enzyme in the polyol pathway, plays a key role in mediating myocardial ischemia/reperfusion (I/R) injury. In earlier studies, using transgenic mice broadly expressing human AKR1B1 to human-relevant levels, mice devoid of Akr1b3, and pharmacological inhibitors of AR, we demonstrated that AR is an important component of myocardial I/R injury and that inhibition of this enzyme protects the heart from I/R injury. In this study, our objective was to investigate if AR modulates the ß-catenin pathway and consequent activation of mesenchymal markers during I/R in the heart. To test this premise, we used two different experimental models: in vivo, Akr1b3 null mice and wild type C57BL/6 mice (WT) were exposed to acute occlusion of the left anterior descending coronary artery (LAD) followed by recovery for 48 hours or 28 days, and ex-vivo, WT and Akr1b3 null murine hearts were perfused using the Langendorff technique (LT) and subjected to 30 min of global (zero-flow) ischemia followed by 60 min of reperfusion. Our in vivo results reveal reduced infarct size and improved functional recovery at 48 hours in mice devoid of Akr1b3 compared to WT mice. We demonstrate that the cardioprotection observed in Akr1b3 null mice was linked to acute activation of the ß-catenin pathway and consequent activation of mesenchymal markers and genes linked to fibrotic remodeling. The increased activity of the ß-catenin pathway at 48 hours of recovery post-LAD was not observed at 28 days post-infarction, thus indicating that the observed increase in ß-catenin activity was transient in the mice hearts devoid of Akr1b3. In ex vivo studies, inhibition of ß-catenin blocked the cardioprotection observed in Akr1b3 null mice hearts. Taken together, these data indicate that AR suppresses acute activation of ß-catenin and, thereby, blocks consequent induction of mesenchymal markers during early reperfusion after myocardial ischemia. Inhibition of AR might provide a therapeutic opportunity to optimize cardiac remodeling after I/R injury.


Assuntos
Aldeído Redutase/metabolismo , Biomarcadores/metabolismo , Mesoderma/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , beta Catenina/metabolismo , Aldeído Redutase/genética , Animais , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Transformador beta2/metabolismo , Regulação para Cima
20.
EBioMedicine ; 26: 165-174, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29239839

RESUMO

The biochemical, ionic, and signaling changes that occur within cardiomyocytes subjected to ischemia are exacerbated by reperfusion; however, the precise mechanisms mediating myocardial ischemia/reperfusion (I/R) injury have not been fully elucidated. The receptor for advanced glycation end-products (RAGE) regulates the cellular response to cardiac tissue damage in I/R, an effect potentially mediated by the binding of the RAGE cytoplasmic domain to the diaphanous-related formin, DIAPH1. The aim of this study was to investigate the role of DIAPH1 in the physiological response to experimental myocardial I/R in mice. After subjecting wild-type mice to experimental I/R, myocardial DIAPH1 expression was increased, an effect that was echoed following hypoxia/reoxygenation (H/R) in H9C2 and AC16 cells. Further, compared to wild-type mice, genetic deletion of Diaph1 reduced infarct size and improved contractile function after I/R. Silencing Diaph1 in H9C2 cells subjected to H/R downregulated actin polymerization and serum response factor-regulated gene expression. Importantly, these changes led to increased expression of sarcoplasmic reticulum Ca2+ ATPase and reduced expression of the sodium calcium exchanger. This work demonstrates that DIAPH1 is required for the myocardial response to I/R, and that targeting DIAPH1 may represent an adjunctive approach for myocardial salvage after acute infarction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Forminas , Regulação da Expressão Gênica , Humanos , Camundongos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transdução de Sinais/genética , Trocador de Sódio e Cálcio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA