Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986506

RESUMO

Giardia duodenalis is a significant protozoan that affects humans and animals. An estimated 280 million G. duodenalis diarrheal cases are recorded annually. Pharmacological therapy is crucial for controlling giardiasis. Metronidazole is the first-line therapy for treating giardiasis. Several metronidazole targets have been proposed. However, the downstream signaling pathways of these targets with respect to their antigiardial action are unclear. In addition, several giardiasis cases have demonstrated treatment failures and drug resistance. Therefore, the development of novel drugs is an urgent need. In this study, we performed a mass spectrometry-based metabolomics study to understand the systemic effects of metronidazole in G. duodenalis. A thorough analysis of metronidazole processes helps identify potential molecular pathways essential for parasite survival. The results demonstrated 350 altered metabolites after exposure to metronidazole. Squamosinin A and N-(2-hydroxyethyl)hexacosanamide were the most up-regulated and down-regulated metabolites, respectively. Proteasome and glycerophospholipid metabolisms demonstrated significant differential pathways. Comparing glycerophospholipid metabolisms of G. duodenalis and humans, the parasite glycerophosphodiester phosphodiesterase was distinct from humans. This protein is considered a potential drug target for treating giardiasis. This study improved our understanding of the effects of metronidazole and identified new potential therapeutic targets for future drug development.

2.
Sci Rep ; 7(1): 9982, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855575

RESUMO

Clostridium difficile is a major cause of antibiotic-associated diarrhea and the treatment thereof becomes more difficult owing to a rise of multidrug resistant strains. ATP-binding cassette (ABC) transporters are known to play a crucial role in the resistance to multiple antibiotics. In this study, the potential contribution of an ABC transporter in C. difficile multidrug resistance was investigated. The expression level of the cd2068 gene in C. difficile encoding an ABC transporter was up-regulated following the exposure to certain antibiotics compared to the control cells. Heterologous expression of CD2068 in Escherichia coli revealed that it mediated the efflux of fluorescent substrates and conferred resistance to multiple drugs. The CD2068-associated ATPase activity in membrane vesicles was also stimulated by various antibiotics. Furthermore, the insertional inactivation of the cd2068 gene in C. difficile led to a significant increase in susceptibility to antibiotics, which could be genetically complemented, supporting that CD2068 was directly associated to the drug resistance. These results demonstrate the potential role for the ABC transporter CD2068 in the resistance mechanism against multiple drugs in C. difficile.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/metabolismo , Transporte Biológico Ativo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Mutagênese Insercional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA