Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Biotechnol ; 24(13): 1603-1612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843370

RESUMO

Sera obtained from convalescent individuals, and vaccinated individuals can induce low neutralizing efficacy against variants of concerns (VOCs) of SARS-CoV-2. In addition, the majority of COVID-19 vaccines are less efficacious against VOCs when compared to their efficacy against the original virus. Immune escape is one of the significant mechanisms observed during SARS-CoV-2 infection due to the substantial mutational capacity of VOCs such as B.1.1.7, P.1, B.1.351, B.1.617.2, C.37, and B.1.621. Omicron, a novel strain of SARS-CoV-2, also referred to as B.1.1.529, was identified in South Africa. This variant is a potential new VOC by the World Health Organization (WHO), and confirmed cases have been arising across several nations due to its rapid spreading ability. Omicron variant can acquire substantial immune escape following Delta, Beta/Gamma D614G VOCs and subsequently facilitating potential infectivity due to its enhanced ACE2 binding ability. The Omicron variant is a highly mutated variant accompanied by higher transmissibility and immune evasion. This mini review describes the ability of VOCs to acquire immune escape and also describes the comparative neutralization efficacy of several vaccines, including Booster doses against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Mutação , Anticorpos Neutralizantes
2.
J Chromatogr Sci ; 61(8): 750-757, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653716

RESUMO

The object of the analytical work is to develop an analytical multivariate optimization for the determination of Favipiravir (FAV), a SARS-CoV-2 molecule, by the reverse-phase liquid chromatographic method using the analytical quality by design approach. FAV is used as an antiviral drug. Box-Behnken design is utilized for the optimization of the experiment and to identify the critical method parameters like the volume of acetonitrile, temperature and flow rate. Further, these factors are used to design the suitable mathematical models and illustrate their effect on various responses. This newly developed method utilized C18 column (5µm, 100 × 4.6 mm) and a temperature of 40°C with a flow rate of 0.5 mL/min. The mobile phase is composed of acetonitrile and ammonium acetate buffer (pH 4), in the ratio of 20:80v/v and the wavelength of HPLC UV-Detector was fixed to 323nm. This method is validated according to International Council for Harmonization Q2 (R1) guidelines. The System suitability is performed and the retention time of Favipiravir is 3.4min. The linearity range is obtained at 0.062 - 4 µg/mL with a correlation coefficient (r2 = 0.9979). The recovery is found to be in the range of 98.84-100%. Thus, the intended method is found to be simple and robust.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Acetonitrilas/química
3.
Curr Med Chem ; 30(18): 2020-2038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35927905

RESUMO

Several epigenome studies reported the ability of genes to modulate the lipogenic and glucogenic pathways during insulin signaling as well as the other pathways involved in cardiometabolic diseases. Epigenetic plasticity and oxidative stress are interrelated in the pathophysiology of insulin resistance (IR) and cardiometabolic disease conditions. This review aims to ascertain the previous research evidence pertaining to the role of the epigenome and the variations of histone and non-histone proteins during cardiometabolic disease conditions and insulin signaling to develop effective disease-based epigenetic biomarkers and epigenetics-based chromatic therapy. Several public databases, including PubMed, National Library of Medicine, Medline, and google scholar, were searched for the peer-reviewed and published reports. This study delineates the consistent body of evidence regarding the epigenetic alterations of DNA/histone complexes pertinent to oxidative stress, insulin signaling, metabolic cardiomyopathy, and endothelial dysfunction in patients with cardiometabolic diseases. It has been described that both DNA methylation and post-translational histone alterations across visceral and subcutaneous adipose tissue could facilitate gene transcription to modulate inflammation, lipogenesis, and adipogenesis as the complex network of chromatin-modifying enzymatic proteins involved in the defensive insulin signaling across vasculature in patients with cardiometabolic diseases. Resveratrol, vorinostat, trichostatin, and apabetalone are reported to have significant implications as epigenetic modulators. Based on the epigenetic alterations, a wide range of protein/gene markers, such as interleukin-4 (IL-4) and interferon-γ (IFNγ) genes, may be considered as biomarkers in these patients due to their ability to the polarization of immune cells involved in tissue inflammation and atherosclerosis. Hence, it is crucial to unravel the cell-specific epigenetic information to develop individual risk assessment strategies for chromatin-modifying therapies in patients with cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Humanos , Epigênese Genética , Histonas/metabolismo , Metilação de DNA , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Cromatina , Inflamação , Biomarcadores/metabolismo , Insulina/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA