Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 339: 122266, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823930

RESUMO

Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.


Assuntos
Amorphophallus , Mananas , Mananas/química , Mananas/isolamento & purificação , Humanos , Amorphophallus/química , Animais , Fibras na Dieta/análise , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Suplementos Nutricionais , Prebióticos , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia
2.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791451

RESUMO

Fluconazole (FZ) is a potential antifungal compound for treating superficial and systemic candidiasis. However, the use of conventional oral drug products has some limitations. The development of buccal film may be a potential alternative to oral formulations for FZ delivery. The present study involved the development of novel FZ-loaded solid lipid nanoparticles (FZ-SLNs) in pectin solutions and the investigation of their particle characteristics. The particle sizes of the obtained FZ-SLNs were in the nanoscale range. To produce pectin films with FZ-SLNs, four formulations were selected based on the small particle size of FZ-SLNs and their suitable polydispersity index. The mean particle sizes of all chosen FZ-SLNs formulations did not exceed 131.7 nm, and the mean polydispersity index of each formulation was less than 0.5. The properties of films containing FZ-SLNs were then assessed. The preparation of all FZ-SLN-loaded pectin films provided the mucoadhesive matrices. The evaluation of mechanical properties unveiled the influence of particle size variation in FZ-SLNs on the integrity of the film. The Fourier-transform infrared spectra indicated that hydrogen bonds could potentially form between the pectin-based matrix and the constituents of FZ-SLNs. The differential scanning calorimetry thermogram of each pectin film with FZ-SLNs revealed that the formulation was thermally stable and behaved in a solid state at 37 °C. According to a drug release study, a sustained drug release pattern with a burst in the initial stage for all films may be advantageous for reducing the lag period of drug release. All prepared films with FZ-SLNs provided a sustained release of FZ over 6 h. The films containing FZ-SLNs with a small particle size provided good permeability across the porcine mucosa. All film samples demonstrated antifungal properties. These results suggest the potential utility of pectin films incorporating FZ-SLNs for buccal administration.


Assuntos
Antifúngicos , Fluconazol , Nanopartículas , Tamanho da Partícula , Pectinas , Pectinas/química , Nanopartículas/química , Fluconazol/administração & dosagem , Fluconazol/química , Fluconazol/farmacocinética , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/farmacocinética , Administração Bucal , Lipídeos/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Sistemas de Liberação de Medicamentos/métodos , Mucosa Bucal/metabolismo , Mucosa Bucal/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Animais , Lipossomos
3.
Saudi Pharm J ; 32(4): 102002, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439951

RESUMO

Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.

4.
Pharm Nanotechnol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192138

RESUMO

The primary goal of drug formulation is to improve a drug's bioavailability in the body. However, poorly water-soluble drugs present challenging issues related to their solubility and bioavailability factors. Emerging technologies, such as lipid-based drug delivery systems, including micro- or nanoemulsifying drug delivery systems, have become increasingly relevant to address the above challenges. This review presents a thorough overview of self-emulsifying drug delivery systems (SEDDS). It covers the properties, principles, self-emulsification mechanism, formulation strategies, and characterization methods of SEDDS. This review also addresses the delivery of antiviral agents through SEDDS. Moreover, it summarizes the marketed formulations of SEDDS consisting of antiviral agents. This review offers a comprehensive and valuable resource for future perspectives on SEDDS and their potential applications in antiviral drug delivery.

5.
Int J Nanomedicine ; 18: 7889-7900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146468

RESUMO

Introduction: Chitosan nanoparticles have garnered considerable interest in the field of drug delivery owing to their distinctive properties, including biocompatibility, biodegradability, low toxicity, and ability to encapsulate a wide range of drugs. However, the conventional methods (eg, the drop method) for synthesizing chitosan nanoparticles often face limitations in regard to controlling the particle size, morphology, and scalability, hindering their extensive application in drug delivery systems. To overcome these challenges, this study explores using a novel flow chemistry reactor design for fabricating clindamycin-loaded chitosan nanoparticles. Methods: By varying two critical operating parameters of flow chemistry, namely, the flow rate ratio and total flow rate, the impact of these parameters on the properties of chitosan nanoparticles is investigated using a central composite experimental design. Results: The optimized conditions for nanoparticle preparation yielded remarkable results, with chitosan nanoparticles exhibiting a small size of 371.60 nm and an extremely low polydispersity index of 0.042. Furthermore, using novel design flow chemistry reactor, the productivity of chitosan nanoparticles was estimated to be 25,402.17 mg/min, which was ~12.71 times higher than that obtained via batch synthesis. Conclusion: The findings of this study indicate that the use of novel design flow chemistry reactor is promising for synthesizing clindamycin-loaded chitosan nanoparticles and other polymeric nanoparticles intended for drug delivery applications. This is primarily attributed to their ability to produce nanoparticles with a considerably reduced particle size distribution and smaller overall size. The demonstrated high productivity of this technique suggests the potential for industrial-scale nanoparticle manufacturing.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Clindamicina , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
6.
Expert Opin Drug Deliv ; 20(11): 1553-1571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37978899

RESUMO

INTRODUCTION: With the increase in the elderly population and the prevalence of multiple medical conditions, medication adherence, and efficacy have become crucial for the effective management of their health. The aging population faces unique challenges that need to be addressed through advancements in drug delivery systems and formulation technologies. AREAS COVERED: The current review highlights the recent advances in dosage form design for older individuals, with consideration of their specific physiological and cognitive changes. Various dosage forms, such as modified-release tablets/capsules, chewable tablets, and transdermal patches, can be tailored to meet the specific needs of elderly patients. Advancements in drug delivery systems, such as nanotherapeutics, additive manufacturing (three-dimensional printing), and drug-food combinations, improve drug delivery and efficacy and overcome challenges, such as dysphagia and medication adherence. EXPERT OPINION: Regulatory guidelines and considerations are crucial in ensuring the safe utilization of medications among older adults. Important factors to consider include geriatric-specific guidelines, safety considerations, labeling requirements, clinical trial considerations, and adherence and accessibility considerations.


Assuntos
Sistemas de Liberação de Medicamentos , Humanos , Idoso , Comprimidos , Cápsulas , Formas de Dosagem
7.
Med Oncol ; 40(11): 314, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787816

RESUMO

The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Plantas , Sistemas de Liberação de Medicamentos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
8.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836320

RESUMO

Polyglycolic acid (PGA) nanoparticles show promise in biomedical applications due to their exceptional biocompatibility and biodegradability. These nanoparticles can be readily modified, facilitating targeted drug delivery and promoting specific interactions with diseased tissues or cells, including imaging agents and theranostic approaches. Their potential to advance precision medicine and personalized treatments is evident. However, conventional methods such as emulsification solvent evaporation via batch synthesis or tubular reactors via flow chemistry have limitations in terms of nanoparticle properties, productivity, and scalability. To overcome these limitations, this study focuses on the design and development of a 3D-printed vortex tube reactor for the continuous synthesis of PGA nanoparticles using flow chemistry. Computer-aided design (CAD) and the design of experiments (DoE) optimize the reactor design, and computational fluid dynamics simulations (CFD) evaluate the mixing index (MI) and Reynolds (Re) expression. The optimized reactor design was fabricated using fused deposition modeling (FDM) with polypropylene (PP) as the polymer. Dispersion experiments validate the optimization process and investigate the impact of input flow parameters. PGA nanoparticles were synthesized and characterized for size and polydispersity index (PDI). The results demonstrate the feasibility of using a 3D-printed vortex tube reactor for the continuous synthesis of PGA nanoparticles through flow chemistry and highlight the importance of reactor design in nanoparticle production. The CFD results of the optimized reactor design showed homogeneous mixing across a wide range of flow rates with increasing Reynolds expression. The residence time distribution (RTD) results confirmed that increasing the flow rate in the 3D-printed vortex tube reactor system reduced the dispersion variance in the tracer. Both experiments demonstrated improved mixing efficiency and productivity compared to traditional tubular reactors. The study also revealed that the total flow rate had a significant impact on the size and polydispersity index of the formulated PGA nanoparticle, with the optimal total flow rate at 104.46 mL/min, leading to smaller nanoparticles and a lower polydispersity index. Additionally, increasing the aqueous-to-organic volumetric ratio had a significant effect on the reduced particle size of the PGA nanoparticles. Overall, this study provides insights into the use of 3D-printed vortex tube reactors for the continuous synthesis of PGA nanoparticles and underscores the importance of reactor design and flow parameters in PGA nanoparticle formulation.

9.
Pharmaceutics ; 15(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37514063

RESUMO

Three-dimensional (3D) printing is an unrivaled technique that uses computer-aided design and programming to create 3D products by stacking materials on a substrate. Today, 3D printing technology is used in the whole drug development process, from preclinical research to clinical trials to frontline medical treatment. From 2009 to 2020, the number of research articles on 3D printing in healthcare applications surged from around 10 to 2000. Three-dimensional printing technology has been applied to several kinds of drug delivery systems, such as oral controlled release systems, micropills, microchips, implants, microneedles, rapid dissolving tablets, and multiphase release dosage forms. Compared with conventional manufacturing methods of pharmaceutical products, 3D printing has many advantages, including high production rates due to the flexible operating systems and high drug loading with the desired precision and accuracy for potent drugs administered in small doses. The cost of production via 3D printing can be decreased by reducing material wastage, and the process can be adapted to multiple classes of pharmaceutically active ingredients, including those with poor solubility. Although several studies have addressed the benefits of 3D printing technology, hospitals and pharmacies have only implemented this process for a small number of practical applications. This article discusses recent 3D printing applications in hospitals and pharmacies for medicinal preparation. The article also covers the potential future applications of 3D printing in pharmaceuticals.

10.
Int J Cosmet Sci ; 45(6): 739-748, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402220

RESUMO

OBJECTIVE: The excessive use of plastic packaging, even though it is possible to recycle it, is one of the main causes of global warming. In this study, dissolvable shower gel tablets for multiple uses have been developed in order to reduce the use of fresh plastic packaging. METHODS: The appropriate ratio of two surfactants, cocoyl glutamic acid (CGA) and sodium coco sulphate (SCS), was optimized using design of experiments. Additionally, skin hydration of the emollient either omega oil or glycerine was taken into account when determining its concentration. After that, powdered shower gel formulations were made and tested for their properties, including cleaning power, and foamability. On 30 human volunteers, the effects of reconstituted shower gel on skin redness, cleaning effectiveness and overall satisfaction were evaluated. RESULTS: The study found that, when cleaning power and foam height were taken into account, the proper surfactant ratio was 7.5:0 (SCS:CGA). The 5% glycerine shower gel formula demonstrated significantly greater skin hydration than other formulas. The in vivo study's findings demonstrated that there was no statistically significant difference between selected formulas (5% glycerine and 2.5% omega oil) in terms of cleaning ability. Comparing both formulas to the control, neither showed any skin redness. Additionally, it was discovered that the developed products were much more effective at cleaning and easier to use when washing for the volunteers than regular liquid soap. Overall satisfaction and the moisturizing feel were not significantly different among all products. CONCLUSION: The formula with 7.5% SCS and 5% glycerine is said to be the best one for both cleaning ability and moisturizing effect. These findings suggest that dissolvable shower gel tablets with enhanced skin benefits could offer a promising innovation in the personal care industry.


OBJECTIF: L'utilisation excessive d'emballages en plastique, même s'il est possible de les recycler, est l'une des principales causes du réchauffement climatique. Dans cette étude, des pastilles de gel douche soluble à usages multiples ont été développées afin de réduire l'utilisation d'emballages plastiques. MÉTHODES: Le rapport approprié de deux tensioactifs, l'acide cocoyl glutamique (CGA) et le sulfate de coco sodique (SCS), a été optimisé à l'aide d'un plan d'expériences. De plus, l'hydratation de la peau par l'émollient, soit l'huile omega ou la glycérine, a été prise en compte lors de la détermination de sa concentration. Après cela, des formulations de gel douche en poudre ont été fabriquées et testées pour leurs propriétés, notamment leur pouvoir nettoyant et leur capacité à mousser. Sur 30 volontaires humains, les effets du gel douche reconstitué sur les rougeurs cutanées, l'efficacité nettoyante et la satisfaction globale ont été évalués. RÉSULTATS: L'étude a révélé que, lorsque la puissance de nettoyage et la hauteur de mousse étaient prises en compte, le rapport de surfactant approprié était de 7,5:0 (SCS:CGA). La formule du gel douche a 5 % de glycérine a démontré une hydratation de la peau nettement supérieure à celle des autres formules. Les résultats de l'étude in vivo ont démontré qu'il n'y avait pas de différence statistiquement significative entre les formules sélectionnées (5 % de glycérine et 2,5 % d'huile oméga) en termes de pouvoir nettoyant. En comparant les deux formules au contrôle, aucune n'a montré de rougeur cutanée. De plus, il a été découvert que les produits développés étaient beaucoup plus efficaces pour le nettoyage et plus faciles à utiliser lors du lavage pour les volontaires que le savon liquide ordinaire. La satisfaction globale et la sensation d'hydratation n'étaient pas significativement différentes entre tous les produits. CONCLUSION: La formule avec 7,5 % de SCS et 5 % de glycérine est considérée comme la meilleure pour la capacité de nettoyage et l'effet hydratant. Ces résultats suggèrent que les comprimés de gel douche solubles avec des bienfaits améliorés pour la peau pourraient offrir une innovation prometteuse dans l'industrie des soins personnels.


Assuntos
Glicerol , Pele , Humanos , Emolientes , Comprimidos
11.
Pharmaceutics ; 15(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36839789

RESUMO

In this study, 3D-printed tablets with a constant surface area were designed and fabricated using polylactic acid (PLA) in the outer compartment and polyvinyl alcohol and felodipine (FDP) in the inner compartment. The influences of different surface geometries of the inner compartment, namely, round, hexagon, square, and triangle, on drug release from 3D-printed tablets were also studied. The morphology and porosity of the inner compartment were determined using scanning electron microscopy and synchrotron radiation X-ray tomographic microscopy, respectively. Additionally, drug content and drug release were also evaluated. The results revealed that the round-shaped geometry seemed to have the greatest total surface area of the inner compartment, followed by square-shaped, hexagon-shaped, and triangle-shaped geometries. FDP-loaded 3D-printed tablets with triangle and hexagon surface geometries had the slowest drug release (about 80% within 24 h). In the round-shaped and square-shaped 3D-printed tablets, complete drug release was observed within 12 h. Furthermore, the drug release from triangle-shaped 3D-printed tablets with double the volume of the inner compartment was faster than that of a smaller volume. This was due to the fact that a larger tablet volume increased the surface area contacting the medium, resulting in a faster drug release. The findings indicated that the surface geometry of 3D-printed tablets with a constant surface area affected drug release. This study suggests that 3D printing technology may be used to develop oral solid dosage forms suitable for customized therapeutic treatments.

12.
Pharmaceutics ; 14(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559259

RESUMO

Skin fungal infection is still a serious public health problem due to the high number of cases. Even though medicines are available for this disease, drug resistance among patients has increased. Moreover, access to medicine is restricted in some areas. One of the therapeutic options is herbal medicine. This study aims to develop an ethosome formulation loaded with Zingiber zerumbet (L.) Smith. rhizome extract for enhanced antifungal activity in deep layer skin, which is difficult to cure. Ethosomes were successfully prepared by the cold method, and the optimized formulation was composed of 1% (w/v) phosphatidylcholine and 40% (v/v) ethanol. Transmission electron microscope (TEM) images revealed that the ethosomes had a vesicle shape with a diameter of 205.6-368.5 nm. The entrapment of ethosomes was 31.58% and could inhibit the growth of Candida albicans at a concentration of 312.5 µg/mL. Finally, the ethosome system significantly enhanced the skin penetration and retention of the active compound (zerumbone) compared with the liquid extract. This study showed that Z. zerumbet (L.) rhizome extract could be loaded into ethosomes. The findings could be carried over to the next step for clinical application by conducting further in vivo penetration and permeation tests.

13.
Pharmaceutics ; 14(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36145670

RESUMO

The goal of this study was to develop an add-on device for dry powder inhalers (Accuhaler) via 3D printing to improve drug administration efficiency in patients with limited inspiratory capacity, including young children, the elderly, and those with chronic obstructive pulmonary disease. With salmeterol xinafoate and fluticasone propionate as model active pharmaceutical ingredients (API), the emitted API doses were used to assess the effectiveness of the add-on device. The APIs were quantified by an HPLC assay validated for specificity, range, linearity, accuracy, and precision. The motor power of the add-on device could be regulated to moderate fan speed and the air flow in the assembled device. When 50-100% of the fan motor power of the add-on device was used, the emitted dose from the attached dry powder inhaler (DPI) was increased. A computational fluid dynamics application was used to simulate the air and particle flow in the DPI with the add-on device in order to elucidate the operating mechanism. The use of the add-on device combined with a sufficient inhalation flow rate resulted in a larger pressure drop and airflow velocity at the blister pocket. As these characteristics are associated with powder fluidization, entrainment, and particle re-suspension, this innovative add-on device might be utilized to enhance the DPI emitted drug dose for patients with low inspiratory rates and to facilitate the provision of adequate drug doses to achieve the treatment outcomes.

14.
Pharmaceutics ; 14(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35631521

RESUMO

Chitosan is a natural biopolymer that is present in an abundant supply in sources such as crustacean shells, mushrooms, and insect exoskeletons. It can be used to make a variety of types of drug formulations and is generally safe to use in vivo; plus, it has inherent cholesterol-reducing properties. While an abundance of papers has tested this biopolymer in nanoparticles in cancer and diabetes research, there is a lag of usage, and hence the paucity of information, in the area of cardiovascular research, specifically in atherosclerosis, the topic of this review. This review highlights some of the deficiencies in this niche area of research, examines the range of chitosan nanoparticles that have been researched to date, and proposes several ways forward to advance this field. Nanoparticles used for both diagnostic and therapeutic purposes are reviewed, with a discussion on how these nanoparticles could be better researched in future and what lays ahead as the field potentially moves towards clinical trials in future.

15.
Pharm Nanotechnol ; 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473542

RESUMO

BACKGROUND: Nanostructured lipid carriers (NLCs) are interesting lipid-based carrier systems for enhancing the penetration of drugs through the skin after topical administration. OBJECTIVE: Dual drug-loaded NLCs of alpha-mangostin (M) and resveratrol (R) to enhance antioxidant activity were developed for topical delivery. METHODS: The efficacy of a combination of M and R was evaluated in terms of the antioxidant activity. M and R were loaded into the NLCs using a high shear homogenization and ultrasonication process. The particle size, zeta potential, and physical properties of the NLCs were observed. The M and R loading efficiency as well as release patterns were examined using Franz diffusion cells. Moreover, the antioxidant efficacy and in vitro cytotoxicity in the normal human fibroblast (NHF) of the NLCs were evaluated as well. RESULTS: The results found that the combination of M and R offered synergistic antioxidant activity and was successfully loaded into the NLCs with the size of a nanometer and negative zeta potential. The drugs were loaded in the NLCs as molecular dispersions and slowly released from the NLCs. Interestingly, both drugs maintained their antioxidant activity after being loaded into the NLCs and provided a higher antioxidant activity than those in the single loading of M and R, thus demonstrating that the incorporation of M and R into the NLCs allowed an enhanced antioxidant activity. Moreover, a cytotoxicity study showed that the NLCs were safe and had low cytotoxicity on the NHF cells. CONCLUSION: The M and R loaded NLCs were attractive systems for synergistic antioxidant activity for topical application.

16.
Gels ; 8(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200454

RESUMO

Liquid plaster (LP) is a recently developed wound dressing product that can be used to cover wounds in various parts of the body, especially small injuries or wounds in body parts involved in movement. Given the benefits and applications of LP, this study aimed to develop and evaluate Chromolaena odorata extract-loaded LP with antimicrobial and hemostasis effects. The study was first conducted through the extraction of Choromolaena odorata leaf by using an ethanol maceration technique and identification of the compounds with high-performance liquid chromatography. The LP loaded with Chromolaena odorata extract demonstrates an ability to inhibit S. aureus and S. epidermidis at a MIC of 0.25 mg/mL and MBC of 0.5 mg/mL. The antioxidant activity test was performed by ABTS and DPPH methods demonstrating the free-radical scavenging activity of the extract. The blood clotting activity was established by varying the concentration of Choromolaena odorata leaf extract from 0.0625 mg/mL to 1 mg/mL. The formulation of the film-forming system was developed by varying the solvent, polymer, and plasticizer proportions. The optimum formulation displayed fast film-forming with high elasticity of the film. Moreover, the 20 mg/mL herbal extract-loaded LP provided an antibacterial effect with admissible water vapor transmission and low skin irritation. As a result, the study demonstrates the possibility of introducing the Chromolaena odorata extract-loaded LP to increase the effectiveness of wound healing and the antibacterial effect on the skin.

17.
Pharmaceutics ; 13(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34683900

RESUMO

The purpose of this study was to investigate the impact of the drug loading method on drug release from 3D-printed tablets. Filaments comprising a poorly water-soluble model drug, indomethacin (IND), and a polymer, polyvinyl alcohol (PVA), were prepared by hot-melt extrusion (HME) and compared with IND-loaded filaments prepared with an impregnation (IMP) process. The 3D-printed tablets were fabricated using a fused deposition modeling 3D printer. The filaments and 3D printed tablets were evaluated for their physicochemical properties, swelling and matrix erosion behaviors, drug content, and drug release. Physicochemical investigations revealed no drug-excipient interaction or degradation. IND-loaded PVA filaments produced by IMP had a low drug content and a rapid drug release. Filaments produced by HME with a lower drug content released the drug faster than those with a higher drug content. The drug content and drug release of 3D-printed tablets containing IND were similar to those of the filament results. Particularly, drug release was faster in 3D-printed tablets produced with filaments with lower drug content (both by IMP and HME). The drug release of 3D-printed tablets produced from HME filaments with higher drug content was extended to 24 h due to a swelling-erosion process. This study confirmed that the drug loading method has a substantial influence on drug content, which in turn has a significant effect on drug release. The results suggest that increasing the drug content in filaments might delay drug release from 3D-printed tablets, which may be used for developing dosage forms suited for personalized medicine.

18.
Pharmaceutics ; 13(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371737

RESUMO

The objective of this research was to optimize the tasted-masked microparticles for orally disintegrating tablets containing donepezil hydrochloride using quality risk assessment and design of experiment approaches. The double emulsion solvent evaporation technique using aminoalkyl methacrylate copolymer (AMC) was used to prepare taste-masked microparticles. Factors affecting the quality of the taste-masked microparticles were analyzed using an Ishikawa diagram. A risk-ranking approach was used to rank the formulation and process risks. Furthermore, the effect of AMC quantity, stirring time, and volume of outer water phase on various responses, such as particle size, the amount of drug dissolved at 5 min (Q5) in simulated saliva fluid, and mean dissolution time (MDT) in simulated gastric fluid, was investigated using the Box-Behnken design. The optimized microparticles were then used to prepare orally disintegrating tablets (ODTs) and evaluated by in vitro and in vivo testing. The results demonstrated that particle size was influenced by the AMC amount and stirring time. Q5 was significantly affected by the amount of AMC and the volume of the outer water phase. On the other hand, these two factors had a positive effect on MDT. The optimized microparticles had a particle size of 174.45 ± 18.19 µm, Q5 of 5.04%, and MDT of 5.97 min. The ODTs with taste-masked microparticles showed acceptable in vitro dissolution with an MDT of 5 min. According to the results of a panel of six human volunteers, they greatly improved palatability.

19.
Gels ; 7(3)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34449603

RESUMO

Dysphagia refers to difficulty swallowing certain foods, liquids, or pills. It is common among the elderly with chronic diseases who need to take drugs for long periods. Therefore, dysphagia might reduce compliance with oral drug administration in the aging population. Many pharmaceutical companies search for new products to serve as swallowing aids. Existing products are expensive and do not suit all geriatric patients. Therefore, this study aimed to develop and investigate pill swallowing aid gels prepared from carboxymethyl cellulose and chitosan. We formulated gels by dissolving different concentrations of carboxymethyl cellulose and low or high molecular weight chitosan in solvents to find appropriate gel rheology properties. We then added several portions of glycerin as the glidant of the formulation. We found that the optimized gel formulation was 6.25% (w/w) chitosan with a molecular weight of 80-120 kDa dissolved in 1.2% acetic acid and 4% (w/w) glycerin. The developed pill swallowing gel's rheology was pseudoplastic with a viscosity of 73.74 ± 3.20 Pa⸱s. The developed chitosan gel had enhanced flow ability; it allowed the pill to cross a 300 mm tube within 6 s, while the reference product took 3 s. Even though the reference product could carry the pill in the tube faster, the chitosan gel better covered the pill, making it more convenient to use. Finally, using a theophylline tablet as a model tablet dosage form, we assessed the gel's effect on drug disintegration and dissolution. The chitosan gel delayed the tablet disintegration time by about 3-7 min and slightly affected the theophylline dissolution rate. Lastly, all gels were physically stable after a month of storage in the stress condition. These results show the feasibility of manufacturing a chitosan gel usable as a pill swallowing gel for patients with dysphagia.

20.
Pharm Dev Technol ; 25(3): 340-350, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31814494

RESUMO

Kaempferia parviflora, a medicinal herb, treats hypertension and promotes longevity with good health and well-being. Its bioactive component is poorly soluble in water, resulting in poor absorption. This study aimed to enhance the bioavailability of K. parviflora dichloromethane (KPD) extract using a self-nanoemulsifying drug delivery system (SNEDDS). KPD was dissolved in diethylene glycol monoethyl, polyoxyl-35 castor oil and caprylic/capric glyceride, and clear yellow SNEDDS solution was obtained. The methoxyflavone markers were used for content and dissolution analysis. Solid SNEDDS was prepared by stepwise mixing of KPD using a mortar and pestle (1:1 ratio) with five solid carriers: Aerosil® 200, Florite® RE, Neusilin® US2 (NEUS), Fujicalin®, and Neusilin® UFL2. The USP apparatus II with simulated gastric fluid USP (SGF without pepsin, pH 1.2) was used in order to perform the in vitro dissolution. The methoxyflavones dissolution at 60 min from KPD, SEDDS, and SNEDDS/NEUS were approximately 16, 92, and 73%, respectively. The pharmacokinetic profiles of methoxyflavones for oral administration were studied using Wistar rats; the areas under the curve of SNEDDS/NEUS (1.77-fold) and SNEDDS (5.38-fold) were significantly higher than that of KPD. The developed formulations showed good stability after storage for 6 months under accelerated and normal conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Flavonas/administração & dosagem , Extratos Vegetais/administração & dosagem , Zingiberaceae/química , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Emulsões , Flavonas/isolamento & purificação , Flavonas/farmacocinética , Masculino , Extratos Vegetais/farmacocinética , Ratos , Ratos Wistar , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA