Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(16): 168672, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908783

RESUMO

CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity. Telomeres and other G-rich regions are strongly predisposed to oxidative DNA damage in the form of 8-oxoguanines, which are typically repaired by the base-excision repair (BER) pathway. Moreover, recent studies suggest that CST functions in the repair of oxidative DNA lesions. Therefore, we tested whether CST interacts with and regulates BER protein activity. Here, we show that CST robustly stimulates proteins involved in BER, including OGG1, Pol ß, APE1, and LIGI, on both telomeric and non-telomeric DNA substrates. Biochemical reconstitution of the pathway indicates that CST stimulates BER. Finally, knockout of STN1 or CTC1 leads to increased levels of 8-oxoguanine, suggesting defective BER in the absence of CST. Combined, our results define an undiscovered function of CST in BER, where it acts as a stimulatory factor to promote efficient genome-wide oxidative repair.

2.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738876

RESUMO

Functional characterization of proteins requires them to be expressed and purified in substantial amounts with high purity to perform biochemical assays. The Fast Protein Liquid Chromatography (FPLC) system allows high-resolution separation of complex protein mixtures. By adjusting various parameters in FPLC, such as selecting the appropriate purification matrix, regulating the protein sample's temperature, and managing the sample's flow rate onto the matrix and the elution rate, it is possible to ensure the protein's stability and functionality. In this protocol, we will demonstrate the versatility of the FPLC system to purify 6X-His-tagged flap endonuclease 1 (FEN1) protein, produced in bacterial cultures. To improve protein purification efficiency, we will focus on multiple considerations, including proper column packing and preparation, sample injection using a sample loop, flow rate of sample application to the column, and sample elution parameters. Finally, the chromatogram will be analyzed to identify fractions containing high yields of protein and considerations for proper recombinant protein long-term storage. Optimizing protein purification methods is crucial for improving the precision and reliability of protein analysis.


Assuntos
Cromatografia de Afinidade , Cromatografia de Afinidade/métodos , Endonucleases Flap/química , Endonucleases Flap/isolamento & purificação , Endonucleases Flap/metabolismo , Cromatografia Líquida/métodos , Histidina/química , Escherichia coli/genética , Escherichia coli/química , Escherichia coli/metabolismo , Oligopeptídeos/química , Oligopeptídeos/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
3.
Nucleic Acids Res ; 51(22): 12185-12206, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37930834

RESUMO

The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.


Assuntos
Instabilidade Genômica , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/genética , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA