Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(44): 17808-17817, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661760

RESUMO

Three-dimensional (3D) photonic crystals with complete photonic band gap (PBG) are fascinating due to the possibility of controlling light in all directions. Realizing such photonic crystals is nontrivial due to symmetry requirements and associated fabrication challenges. Liquid crystalline cubic blue phases (BPs) are soft 3D photonic crystals with an incomplete PBG due to the low refractive index contrast (<0.1). The present work attempts to drive a cubic BP towards a complete PBG via a simple approach of high refractive index nanoparticle-doping. The photonic band diagrams and reflection spectra of the nanoparticle-doped BP simulated using the finite element method show an increased PBG width, a parameter that quantifies the complete PBG. The reflection spectra obtained from UV-Vis-NIR spectroscopy show an increase (by a factor of >2) in PBG width for the nanoparticle-doped BP, validating the simulations. The findings are explained based on increased refractive index contrast (∼1.4) due to the nanoparticles getting trapped in the cores of disclination lines that make up the BP lattice. The simulations also indicate effective confinement of electric field eigenmodes in the nanoparticle-doped BP leading to high attenuation of the incident light. Further, the iso-frequency contours extracted from the band diagrams exhibit self-collimation and negative refraction of light.

2.
J Phys Chem B ; 125(41): 11582-11590, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34618451

RESUMO

Tunability of fluorescence intensity is an essential parameter for enhancing the versatility of devices like emissive displays and solar cells. Soft photonic crystals, with their tunable photonic band gap (PBG), are highly sought-after systems for such purposes. Here, we report modulation of photoluminescence (PL) intensity in a fluorescent dye-doped blue phase liquid crystal, a 3D soft photonic crystal. On cooling, from the isotropic fluid phase, the PL intensity gets enhanced due to the overlapping of the emission wavelength of the dye with the photonic band edge. However, the PL intensity decreases on the application of an electric field, despite both thermal and electric fields having a similar effect (red shift) on the PBG. The contrasting behavior of PL intensity, also observed in composites obtained by varying the dye and the chiral dopant (handedness), is discussed in terms of scattering pathways for the emitted photons. The time-resolved PL studies show a reduction in the lifetime of the excited species upon cooling, validating the thermal dependence of PL intensity modulation due to Purcell effect. The facile modulation of PL intensity in the dye-doped blue phase system makes it appealing from the point of view of high-performance photonic applications.

3.
Nanoscale Adv ; 3(9): 2508-2515, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134163

RESUMO

Dynamic tuning of electromagnetic response is an important parameter to realize exotic applications of optical metamaterials. Self-assembly achieved via the incorporation of soft materials is an attractive approach to achieve tunable optical properties. Among the soft materials, liquid crystals are highly sought after due to the inherent soft-stimuli responsiveness. This article reports experimental evidence of tunable epsilon-near-zero (ENZ) behavior brought about by an optical field in a self-assembled liquid crystal - nanoparticle system. The material consists of Au nanoparticles capped with a photo-active chiral liquid crystal ligand. In the liquid crystalline state, the system self-assembles into a helical lamellar superstructure, confirmed by polarizing optical microscopy, HRTEM, XRD, and circular dichroism studies. Upon irradiation with UV light, the localized surface plasmon resonance peak of Au red-shifts by ∼10 nm and gets restored with white light illumination. The effective permittivity of the system obtained from ellipsometry indicates ENZ behavior in the visible spectrum with a bandwidth of ∼45 nm which gets enhanced by a factor of 1.6 on UV illumination. Theoretical calculations, carried out using the effective medium approach, support the experimental findings, making the system an efficient ENZ metamaterial in the optical regime.

4.
Soft Matter ; 15(48): 9982-9990, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31755520

RESUMO

We report studies on the Frank elastic constant behaviour of a liquid crystal gel system exhibiting the twist bend nematic (Ntb) phase. Physical gelation is observed to ease the splay and stabilize the twist deformations in the nematic phase preceding the Ntb. More importantly, the ultra-low bend elastic constant (K33) of the system is enhanced by an order of magnitude on gelation. The magnitude of K33 remains high even in the vicinity of the Ntb phase, which otherwise is susceptible to bend deformations. This phenomenon is explained from the point of view of polar interactions in the Ntb system. XRD and dynamic rheology along with the elastic constant data validate this argument. Another salient feature of the system is that gel fibers grown in the direction orthogonal to the helical axis vanish in the Ntb phase as observed from polarizing optical microscopy. A possible reason for this is discussed on the basis of ordering developed in the surrounding medium. This feature gives the possibility of using the Ntb phase as a tool to imprint directional microstructures with a gel network.

5.
Nanoscale ; 10(33): 15686-15695, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30091765

RESUMO

A soft photoluminescent composite, prepared using a nematic liquid crystal and a fluorescent gelator, exhibits a nearly two orders of magnitude increase in fluorescence on addition of superparamagnetic nanoparticles. The internal magnetic field generated leading to an increase in the population of singlet excitons which affects the radiative efficiency, and enhanced ordering of the LC environment are proposed to be responsible for the large increase seen in fluorescence. Also, the nematic nature of the host liquid crystal medium aids in switching of the fluorescence intensity between its anisotropic limits on application of an external electric field with the switch-off time being faster compared to the field-driven switch-on time.

6.
ACS Appl Mater Interfaces ; 9(45): 39569-39575, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29067801

RESUMO

We report a robust soft photonic crystal system, fabricated using blue phase (BP) liquid crystal, which can efficiently filter the visible light. The BP gel system is obtained without surface treatment or polymerization, and thus is facile and cost effective to fabricate. Perfect monodomain with vivid color is achieved with a low electric field, which can be further tuned to reflect a second color. Most importantly, apart from the field-induced color switching, a dark/transparent state is also achieved due to complete unwinding of the BP helical structure. A potential application as a tunable color-reflecting mirror, which can be switched between "reflecting" and "transparent" states, is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA