Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 357: 107587, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984030

RESUMO

We present a multidimensional magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize native Pseudomonas fluorescens colony biofilms at natural abundance without isotope-labelling. By using a high-resolution INEPT-based 2D 1H-13C ssNMR spectrum and thorough peak deconvolution at the 1D ssNMR spectra, approximately 80/134 (in 1D/2D) distinct biofilm chemical sites were identified. We compared CP and INEPT 13C ssNMR spectra to differentiate signals originating from the mobile and rigid fractions of the biofilm, and qualitatively determined dynamical changes by comparing CP buildup behaviors. Protein and polysaccharide signals were differentiated and identified by utilizing FapC protein signals as a template, a biofilm forming functional amyloid from Pseudomonas. We identified several biofilm polysaccharide species such as glucose, mannan, galactose, heptose, rhamnan, fucose and N-acylated mannuronic acid by using 1H and 13C chemical shifts obtained from the 2D spectrum. To our knowledge, this study marks the first high-resolution multidimensional ssNMR characterization of a native bacterial biofilm. Our experimental pipeline can be readily applied to other in vitro biofilm model systems and natural biofilms and holds the promise of making a substantial impact on biofilm research, fostering new ideas and breakthroughs to aid in the development of strategic approaches to combat infections caused by biofilm-forming bacteria.


Assuntos
Amiloide , Pseudomonas , Espectroscopia de Ressonância Magnética , Biofilmes , Polissacarídeos
2.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873242

RESUMO

We present a high-resolution 1D and 2D magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize native Pseudomonas fluorescens colony biofilms at natural abundance without isotope-labelling. By using a high-resolution INEPT-based 2D 1 H- 13 C ssNMR spectrum and thorough peak deconvolution approach at the 1D ssNMR spectra, approximately 80/134 (in 1D/2D) distinct biofilm chemical sites were identified. We compared CP and INEPT 13 C ssNMR spectra to different signals originating from the mobile and rigid fractions of the biofilm, and qualitative determined dynamical changes by comparing CP buildup behaviors. Protein and polysaccharide signals were differentiated and identified by utilizing FapC signals as a template, a biofilm forming functional amyloid from Pseudomonas . We also attempted to identify biofilm polysaccharide species by using 1 H/ 13 C chemical shifts obtained from the 2D spectrum. This study marks the first demonstration of high-resolution 2D ssNMR spectroscopy for characterizing native bacterial biofilms and expands the scope of ssNMR in studying biofilms. Our experimental pipeline can be readily applied to other in vitro biofilm model systems and natural biofilms and holds the promise of making a substantial impact on biofilm research, fostering new ideas and breakthroughs to aid in the development of strategic approaches to combat infections caused by biofilm-forming bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA