Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 8: 631769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33768104

RESUMO

Background: SARS-CoV-2 infection may not provide long lasting post-infection immunity. While hundreds of reinfections have reported only a few have been confirmed. Whole genome sequencing (WGS) of the viral isolates from the different episodes is mandatory to establish reinfection. Methods: Nasopharyngeal (NP), oropharyngeal (OP) and whole blood (WB) samples were collected from paired samples of four individuals who were suspected of SARS-CoV-2 reinfection based on distinct clinical episodes and RT-PCR tests. Details from their case record files and investigations were documented. RNA was extracted from the NP and OP samples and subjected to WGS, and the nucleotide and amino acid sequences were subjected to genome and protein-based functional annotation analyses. Serial serology was performed for Anti-N IgG, Anti- S1 RBD IgG, and sVNT (surrogate virus neutralizing test). Findings: Three patients were more symptomatic with lower Ct values and longer duration of illness. Seroconversion was detected soon after the second episode in three patients. WGS generated a genome coverage ranging from 80.07 to 99.7%. Phylogenetic analysis revealed sequences belonged to G, GR and "Other" clades. A total of 42mutations were identified in all the samples, consisting of 22 non-synonymous, 17 synonymous, two in upstream, and one in downstream regions of the SARS-CoV-2 genome. Comparative genomic and protein-based annotation analyses revealed differences in the presence and absence of specific mutations in the virus sequences from the two episodes in all four paired samples. Interpretation: Based on the criteria of genome variations identified by whole genome sequencing and supported by clinical presentation, molecular and serological tests, we were able to confirm reinfections in two patients, provide weak evidence of reinfection in the third patient and unable to rule out a prolonged infection in the fourth. This study emphasizes the importance of detailed analyses of clinical and serological information as well as the virus's genomic variations while assessing cases of SARS-CoV-2 reinfection.

2.
Brief Funct Genomics ; 20(1): 28-41, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491070

RESUMO

The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.


Assuntos
Infecções/genética , RNA não Traduzido/fisiologia , COVID-19/genética , COVID-19/virologia , Citocinas/fisiologia , Estresse do Retículo Endoplasmático , Interações Hospedeiro-Patógeno , Humanos , Infecções/metabolismo , Elementos Nucleotídeos Longos e Dispersos , Estresse Oxidativo , RNA não Traduzido/genética , SARS-CoV-2/isolamento & purificação , Elementos Nucleotídeos Curtos e Dispersos , Resposta a Proteínas não Dobradas
3.
Pathogens ; 9(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158051

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has challenged the research community globally to innovate, interact, and integrate findings across hierarchies. Research on SARS-CoV-2 has produced an abundance of data spanning multiple parallels, including clinical data, SARS-CoV-2 genome architecture, host response captured through transcriptome and genetic variants, microbial co-infections (metagenome), and comorbidities. Disease phenotypes in the case of COVID-19 present an intriguing complexity that includes a broad range of symptomatic to asymptomatic individuals, further compounded by a vast heterogeneity within the spectrum of clinical symptoms displayed by the symptomatic individuals. The clinical outcome is further modulated by the presence of comorbid conditions at the point of infection. The COVID-19 pandemic has produced an expansive wealth of literature touching many aspects of SARS-CoV-2 ranging from causal to outcome, predisposition to protective (possible), co-infection to comorbidity, and differential mortality globally. As challenges provide opportunities, the current pandemic's challenge has underscored the need and opportunity to work for an integrative approach that may be able to thread together the multiple variables. Through this review, we have made an effort towards bringing together information spanning across different domains to facilitate researchers globally in pursuit of their response to SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA