Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 133(6): 463-480, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555328

RESUMO

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Assuntos
Doenças das Valvas Cardíacas , Prolapso da Valva Mitral , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/prevenção & controle , Doenças das Valvas Cardíacas/metabolismo , Valva Mitral/metabolismo , Prolapso da Valva Mitral/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo
2.
Microcirculation ; 30(2-3): e12787, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36197446

RESUMO

INTRODUCTION: Lymphatic vessels collect interstitial fluid, immune cells, and digested lipids and return these bodily fluids to blood through two pairs of lymphovenous valves (LVVs). Like other cardiovascular valves LVVs prevent the backflow of blood into the lymphatic vessels. In addition to LVVs, platelets are necessary to prevent the entry of blood into the lymphatic vessels. Platelet thrombi are observed at LVVs suggesting that LVVs and platelets function in synergy to regulate blood/lymphatic separation. OBJECTIVES: The primary objective of this work is to determine whether platelets can regulate blood/lymph separation independently of LVVs. METHODS: The transcription factor GATA2 is necessary for the development of both LVVs and hematopoietic stem cells. Using various endothelial- and hematopoietic cell expressed Cre-lines, we conditionally deleted Gata2. We hypothesized that this strategy would identify the tissue- and time-specific roles of GATA2 and reveal whether platelets and LVVs can independently regulate blood/lymph separation. RESULTS: Lymphatic vasculature-specific deletion of Gata2 results in the absence of LVVs without compromising blood/lymph separation. In contrast, deletion of GATA2 from both lymphatic vasculature and hematopoietic cells results in the absence of LVVs, reduced number of platelets and blood-filled lymphatic vasculature. CONCLUSION: GATA2 promotes blood/lymph separation through platelets. Furthermore, LVVs are the only known sites of interaction between blood and lymphatic vessels. The fact that blood is able to enter the lymphatic vessels of mice lacking LVVs and platelets indicates that under these circumstances the lymphatic and blood vessels are connected at yet to be identified sites.


Assuntos
Plaquetas , Vasos Linfáticos , Camundongos , Animais , Fator de Transcrição GATA2/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-35817543

RESUMO

Lymphatic vasculature regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood. Lymphatic vasculature is also critical for lipid absorption and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels, lymphatic valves, and lymphovenous valves. Defects in any of these structures could lead to lymphatic anomalies such as lymphedema, cystic lymphatic malformation, and Gorham-Stout disease. Basic research has led to a deeper understanding of the stepwise development of the lymphatic vasculature. VEGF-C and shear stress signaling pathways have evolved as critical regulators of lymphatic vascular development. Loss-of-function and gain-of-function mutations in genes that are involved in these signaling pathways are associated with lymphatic anomalies. Importantly, drugs that target these molecules are showing outstanding efficacy in treating certain lymphatic anomalies. In this article, we summarize these exciting developments and highlight the future challenges.

4.
Cell Mol Life Sci ; 78(16): 5903-5923, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34240226

RESUMO

Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.


Assuntos
Vasos Linfáticos/metabolismo , Transdução de Sinais/fisiologia , Animais , Sistema Cardiovascular/metabolismo , Humanos , Linfedema/metabolismo , Estresse Mecânico
5.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34291736

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a pandemic. Severe disease is associated with dysfunction of multiple organs, but some infected cells do not express ACE2, the canonical entry receptor for SARS-CoV-2. Here, we report that the C-type lectin receptor L-SIGN interacted in a Ca2+-dependent manner with high-mannose-type N-glycans on the SARS-CoV-2 spike protein. We found that L-SIGN was highly expressed on human liver sinusoidal endothelial cells (LSECs) and lymph node lymphatic endothelial cells but not on blood endothelial cells. Using high-resolution confocal microscopy imaging, we detected SARS-CoV-2 viral proteins within the LSECs from liver autopsy samples from patients with COVID-19. We found that both pseudo-typed virus enveloped with SARS-CoV-2 spike protein and authentic SARS-CoV-2 virus infected L-SIGN-expressing cells relative to control cells. Moreover, blocking L-SIGN function reduced CoV-2-type infection. These results indicate that L-SIGN is a receptor for SARS-CoV-2 infection. LSECs are major sources of the clotting factors vWF and factor VIII (FVIII). LSECs from liver autopsy samples from patients with COVID-19 expressed substantially higher levels of vWF and FVIII than LSECs from uninfected liver samples. Our data demonstrate that L-SIGN is an endothelial cell receptor for SARS-CoV-2 that may contribute to COVID-19-associated coagulopathy.


Assuntos
COVID-19 , Capilares , Moléculas de Adesão Celular/metabolismo , Células Endoteliais , Lectinas Tipo C/metabolismo , Fígado/irrigação sanguínea , Vasos Linfáticos , Receptores de Superfície Celular/metabolismo , SARS-CoV-2/fisiologia , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Capilares/metabolismo , Capilares/patologia , Capilares/virologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Perfilação da Expressão Gênica/métodos , Humanos , Fígado/patologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Vasos Linfáticos/virologia , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus
6.
Cell Stem Cell ; 28(6): 989-990, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34087159

RESUMO

Specific cell targeting with one site-specific recombinase is challenging. In this issue of Cell Stem Cell, Han et al. (2021) released a collection of Dre drivers and demonstrate how two recombinases can be combined to improve the cell specificity of lineage tracing and gene inactivation in mice.


Assuntos
Integrases , Recombinases , Animais , Sequência de Bases , Movimento Celular , Integrases/metabolismo , Camundongos , Recombinases/genética , Recombinases/metabolismo
7.
Development ; 147(23)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33144395

RESUMO

RASA1, a negative regulator of Ras-MAPK signaling, is essential for the development and maintenance of lymphatic vessel valves. However, whether RASA1 is required for the development and maintenance of lymphovenous valves (LVV) and venous valves (VV) is unknown. In this study, we show that induced disruption of Rasa1 in mouse embryos did not affect initial specification of LVV or central VV, but did affect their continued development. Similarly, a switch to expression of a catalytically inactive form of RASA1 resulted in impaired LVV and VV development. Blocked development of LVV was associated with accumulation of the basement membrane protein, collagen IV, in LVV-forming endothelial cells (EC), and could be partially or completely rescued by MAPK inhibitors and drugs that promote collagen IV folding. Disruption of Rasa1 in adult mice resulted in venous hypertension and impaired VV function that was associated with loss of EC from VV leaflets. In conclusion, RASA1 functions as a negative regulator of Ras signaling in EC that is necessary for EC export of collagen IV, thus permitting the development of LVV and the development and maintenance of VV.


Assuntos
Desenvolvimento Embrionário/genética , Organogênese/genética , Válvulas Venosas/crescimento & desenvolvimento , Proteína p120 Ativadora de GTPase/genética , Animais , Membrana Basal/crescimento & desenvolvimento , Membrana Basal/metabolismo , Colágeno Tipo IV/genética , Embrião de Mamíferos , Células Endoteliais/citologia , Vasos Linfáticos/metabolismo , Camundongos , Válvulas Venosas/metabolismo
8.
Development ; 147(23)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33060128

RESUMO

Lymphatic vasculature is an integral part of digestive, immune and circulatory systems. The homeobox transcription factor PROX1 is necessary for the development of lymphatic vessels, lymphatic valves (LVs) and lymphovenous valves (LVVs). We and others previously reported a feedback loop between PROX1 and vascular endothelial growth factor-C (VEGF-C) signaling. PROX1 promotes the expression of the VEGF-C receptor VEGFR3 in lymphatic endothelial cells (LECs). In turn, VEGF-C signaling maintains PROX1 expression in LECs. However, the mechanisms of PROX1/VEGF-C feedback loop remain poorly understood. Whether VEGF-C signaling is necessary for LV and LVV development is also unknown. Here, we report for the first time that VEGF-C signaling is necessary for valve morphogenesis. We have also discovered that the transcriptional co-activators YAP and TAZ are required to maintain PROX1 expression in LVs and LVVs in response to VEGF-C signaling. Deletion of Yap and Taz in the lymphatic vasculature of mouse embryos did not affect the formation of LVs or LVVs, but resulted in the degeneration of these structures. Our results have identified VEGF-C, YAP and TAZ as a crucial molecular pathway in valve development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Proteínas de Homeodomínio/genética , Linfangiogênese/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Fator C de Crescimento do Endotélio Vascular/genética , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Morfogênese/genética , Transdução de Sinais/genética , Válvulas Venosas/crescimento & desenvolvimento , Válvulas Venosas/metabolismo , Proteínas de Sinalização YAP
9.
JCI Insight ; 5(14)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32544090

RESUMO

During the growth of lymphatic vessels (lymphangiogenesis), lymphatic endothelial cells (LECs) at the growing front sprout by forming filopodia. Those tip cells are not exposed to circulating lymph, as they are not lumenized. In contrast, LECs that trail the growing front are exposed to shear stress, become quiescent, and remodel into stable vessels. The mechanisms that coordinate the opposed activities of lymphatic sprouting and maturation remain poorly understood. Here, we show that the canonical tip cell marker Delta-like 4 (DLL4) promotes sprouting lymphangiogenesis by enhancing VEGF-C/VEGF receptor 3 (VEGFR3) signaling. However, in lumenized lymphatic vessels, laminar shear stress (LSS) inhibits the expression of DLL4, as well as additional tip cell markers. Paradoxically, LSS also upregulates VEGF-C/VEGFR3 signaling in LECs, but sphingosine 1-phosphate receptor 1 (S1PR1) activity antagonizes LSS-mediated VEGF-C signaling to promote lymphatic vascular quiescence. Correspondingly, S1pr1 loss in LECs induced lymphatic vascular hypersprouting and hyperbranching, which could be rescued by reducing Vegfr3 gene dosage in vivo. In addition, S1PR1 regulates lymphatic vessel maturation by inhibiting RhoA activity to promote membrane localization of the tight junction molecule claudin-5. Our findings suggest a potentially new paradigm in which LSS induces quiescence and promotes the survival of LECs by downregulating DLL4 and enhancing VEGF-C signaling, respectively. S1PR1 dampens LSS/VEGF-C signaling, thereby preventing sprouting from quiescent lymphatic vessels. These results also highlight the distinct roles that S1PR1 and DLL4 play in LECs when compared with their known roles in the blood vasculature.


Assuntos
Linfangiogênese/genética , Receptores de Esfingosina-1-Fosfato/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Proteínas de Membrana/genética , Camundongos , Pseudópodes/genética , Pseudópodes/metabolismo , Transdução de Sinais , Estresse Mecânico
10.
J Physiol ; 598(12): 2297-2310, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32267537

RESUMO

KEY POINTS: Lymphatic valve defects are one of the major causes of lymph transport dysfunction; however, there are no accessible methods for quantitatively assessing valve function. This report describes a novel technique for quantifying lymphatic valve back-leak. Postnatal endothelial-specific deletion of connexin 43 (Cx43) in connexin 37 null (Cx37-/- ) mice results in rapid regression of valve leaflets and severe valve dysfunction. This method can also be used for assessing the function of venous and lymphatic valves from various species, including humans. ABSTRACT: The lymphatic system relies on robust, spontaneous contractions of collecting lymphatic vessels and one-way secondary lymphatic valves to efficiently move lymph forward. Secondary valves prevent reflux and allow for the generation of propulsive pressure during each contraction cycle. Lymphatic valve defects are one of the major causes of lymph transport dysfunction. Genetic mutations in multiple genes have been associated with the development of primary lymphoedema in humans; and many of the same mutations in mice result in valve defects that subsequently lead to chylous ascites or chylothorax. At present the only experimental technique for the quantitative assessment of lymphatic valve function utilizes the servo-null micropressure system, which is highly accurate and precise, but relatively inaccessible and difficult to use. We developed a novel, simplified alternative method for quantifying valve function and determining the degree of pressure back-leak through an intact valve in pressurized, single-valve segments of isolated lymphatic vessels. With this diameter-based method, the competence of each lymphatic valve is challenged over a physiological range of pressures (e.g. 0.5-10cmH2 O) and pressure back-leak is extrapolated from calibrated, pressure-driven changes in diameter upstream from the valve. Using mesenteric lymphatic vessels from C57BL/6J, Ub-CreERT2 ;Rasa1fx/fx , Foxc2Cre/+ , Lyve1-Cre;Cx43fx/fx , and Prox1-CreERT2 ;Cx43fx/fx ;Cx37-/- mice, we tested our method on lymphatic valves displaying a wide range of dysfunction, from fully competent to completely incompetent. Our results were validated by simultaneous direct measurement of pressure back-leak using a servo-null micropressure system. Our diameter-based technique can be used to quantify valve function in isolated lymphatic valves from a variety of species. This method also revealed that haplodeficiency in Foxc2 (Foxc2Cre/+ ) is not sufficient to cause significant valve dysfunction; however, postnatal endothelial-specific deletion of Cx43 in Cx37-/- mice results in rapid regression of valve leaflets and severe valve dysfunction.


Assuntos
Vasos Linfáticos , Linfedema , Animais , Conexina 43/genética , Conexinas , Linfedema/genética , Camundongos , Camundongos Endogâmicos C57BL
11.
Front Physiol ; 11: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038308

RESUMO

Obesity is a leading cause of cardiovascular diseases and cancer. Body mass is regulated by the balance between energy uptake and energy expenditure. The etiology of obesity is determined by multiple factors including genetics, nutrient absorption, and inflammation. Lymphatic vasculature is starting to be appreciated as a critical modulator of metabolism and obesity. The primary function of lymphatic vasculature is to maintain interstitial fluid homeostasis. Lymphatic vessels absorb fluids that extravasate from blood vessels and return them to blood circulation. In addition, lymphatic vessels absorb digested lipids from the intestine and regulate inflammation. Hence, lymphatic vessels could be an exciting target for treating obesity. In this article, we will review our current understanding regarding the relationship between lymphatic vasculature and obesity, and highlight some open questions.

12.
Development ; 146(21)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31582413

RESUMO

Mutations in the transcription factor GATA2 cause lymphedema. GATA2 is necessary for the development of lymphatic valves and lymphovenous valves, and for the patterning of lymphatic vessels. Here, we report that GATA2 is not necessary for valvular endothelial cell (VEC) differentiation. Instead, GATA2 is required for VEC maintenance and morphogenesis. GATA2 is also necessary for the expression of the cell junction molecules VE-cadherin and claudin 5 in lymphatic vessels. We identified miR-126 as a target of GATA2, and miR-126-/- embryos recapitulate the phenotypes of mice lacking GATA2. Primary human lymphatic endothelial cells (HLECs) lacking GATA2 (HLECΔGATA2) have altered expression of claudin 5 and VE-cadherin, and blocking miR-126 activity in HLECs phenocopies these changes in expression. Importantly, overexpression of miR-126 in HLECΔGATA2 significantly rescues the cell junction defects. Thus, our work defines a new mechanism of GATA2 activity and uncovers miR-126 as a novel regulator of mammalian lymphatic vascular development.


Assuntos
Células Endoteliais/metabolismo , Fator de Transcrição GATA2/metabolismo , MicroRNAs/metabolismo , Mutação , Angiopoietina-2/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Claudina-5/metabolismo , Família de Proteínas EGF/metabolismo , Endotélio Vascular/metabolismo , Feminino , Deleção de Genes , Humanos , Vasos Linfáticos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq
13.
Cell Rep ; 28(9): 2397-2412.e4, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461654

RESUMO

The lymphatic vasculature requires intraluminal valves to maintain forward lymph flow. Lymphatic valves form and are constantly maintained by oscillatory fluid flow throughout life, yet the earliest steps of how lymphatic endothelial cells are able to respond to fluid shear stress remain unknown. Here, we show that the adherens junction protein VE-cadherin is required for the upregulation of valve-specific transcription factors. Conditional deletion of VE-cadherin in vivo prevented valve formation in the embryo and caused postnatal regression of nearly all lymphatic valves in multiple tissues. Since VE-cadherin is known to signal through ß-catenin and the VEGFR/AKT pathway, each pathway was probed. Expression of a constitutively active ß-catenin mutant or direct pharmacologic activation of AKT in vivo significantly rescued valve regression in the VE-cadherin-deficient lymphatic vessels. In conclusion, VE-cadherin-dependent signaling is required for lymphatic valve formation and maintenance and therapies to augment downstream pathways hold potential to treat lymphedema in patients.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Vasos Linfáticos/metabolismo , Animais , Antígenos CD/genética , Caderinas/genética , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Vasos Linfáticos/embriologia , Vasos Linfáticos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo
14.
JCI Insight ; 4(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30676326

RESUMO

The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema.


Assuntos
Canais Iônicos/metabolismo , Linfangiogênese/genética , Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Transcriptoma , Animais , Antígenos CD , Caderinas , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Canais Iônicos/genética , Vasos Linfáticos/patologia , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais , Estresse Mecânico , Regulação para Cima
15.
Cell Rep ; 25(3): 571-584.e5, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332639

RESUMO

Wnt/ß-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/ß-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/ß-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/ß-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with ß-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/ß-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Músculo Liso Vascular/citologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt
16.
Circ Res ; 123(8): 964-985, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30355030

RESUMO

RATIONALE: Mutations in GJC2 and GJA1, encoding Cxs (connexins) 47 and 43, respectively, are linked to lymphedema, but the underlying mechanisms are unknown. Because efficient lymph transport relies on the coordinated contractions of lymphatic muscle cells (LMCs) and their electrical coupling through Cxs, Cx-related lymphedema is proposed to result from dyssynchronous contractions of lymphatic vessels. OBJECTIVE: To determine which Cx isoforms in LMCs and lymphatic endothelial cells are required for the entrainment of lymphatic contraction waves and efficient lymph transport. METHODS AND RESULTS: We developed novel methods to quantify the spatiotemporal entrainment of lymphatic contraction waves and used optogenetic techniques to analyze calcium signaling within and between the LMC and the lymphatic endothelial cell layers. Genetic deletion of the major lymphatic endothelial cell Cxs (Cx43, Cx47, or Cx37) revealed that none were necessary for the synchronization of the global calcium events that triggered propagating contraction waves. We identified Cx45 in human and mouse LMCs as the critical Cx mediating the conduction of pacemaking signals and entrained contractions. Smooth muscle-specific Cx45 deficiency resulted in 10- to 18-fold reduction in conduction speed, partial-to-severe loss of contractile coordination, and impaired lymph pump function ex vivo and in vivo. Cx45 deficiency resulted in profound inhibition of lymph transport in vivo, but only under an imposed gravitational load. CONCLUSIONS: Our results (1) identify Cx45 as the Cx isoform mediating the entrainment of the contraction waves in LMCs; (2) show that major endothelial Cxs are dispensable for the entrainment of contractions; (3) reveal a lack of coupling between lymphatic endothelial cells and LMCs, in contrast to arterioles; (4) point to lymphatic valve defects, rather than contraction dyssynchrony, as the mechanism underlying GJC2- or GJA1-related lymphedema; and (5) show that a gravitational load exacerbates lymphatic contractile defects in the intact mouse hindlimb, which is likely critical for the development of lymphedema in the adult mouse.


Assuntos
Conexinas/metabolismo , Linfa/metabolismo , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Contração Muscular , Animais , Sinalização do Cálcio , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/deficiência , Conexinas/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Predisposição Genética para Doença , Gravitação , Humanos , Técnicas In Vitro , Vasos Linfáticos/fisiopatologia , Linfedema/genética , Linfedema/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Optogenética , Fenótipo , Fatores de Tempo , Proteína alfa-4 de Junções Comunicantes
17.
Methods Mol Biol ; 1846: 85-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242754

RESUMO

Lymph collected from throughout the body is exclusively returned to blood circulation via two pairs of bilaterally located lymphovenous valves. Lymphovenous valves share numerous similarities with lymphatic and venous valves and are defective in multiple mouse models of lymphedema or lymphatic dysfunction. Here we describe a protocol that combines the strengths of fluorescence microscopy and scanning electron microscopy to precisely locate and analyze the topography of developing lymphovenous valves at high resolution.


Assuntos
Linfangiogênese , Vasos Linfáticos/metabolismo , Vasos Linfáticos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Válvulas Venosas/metabolismo , Válvulas Venosas/ultraestrutura , Animais , Embrião de Mamíferos , Imunofluorescência , Vasos Linfáticos/embriologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos , Válvulas Venosas/embriologia
18.
J Clin Invest ; 128(9): 4025-4043, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30102256

RESUMO

Impaired lymphangiogenesis is a complication of chronic complex diseases, including diabetes. VEGF-C/VEGFR3 signaling promotes lymphangiogenesis, but how this pathway is affected in diabetes remains poorly understood. We previously demonstrated that loss of epsins 1 and 2 in lymphatic endothelial cells (LECs) prevented VEGF-C-induced VEGFR3 from endocytosis and degradation. Here, we report that diabetes attenuated VEGF-C-induced lymphangiogenesis in corneal micropocket and Matrigel plug assays in WT mice but not in mice with inducible lymphatic-specific deficiency of epsins 1 and 2 (LEC-iDKO). Consistently, LECs isolated from diabetic LEC-iDKO mice elevated in vitro proliferation, migration, and tube formation in response to VEGF-C over diabetic WT mice. Mechanistically, ROS produced in diabetes induced c-Src-dependent but VEGF-C-independent VEGFR3 phosphorylation, and upregulated epsins through the activation of transcription factor AP-1. Augmented epsins bound to and promoted degradation of newly synthesized VEGFR3 in the Golgi, resulting in reduced availability of VEGFR3 at the cell surface. Preclinically, the loss of lymphatic-specific epsins alleviated insufficient lymphangiogenesis and accelerated the resolution of tail edema in diabetic mice. Collectively, our studies indicate that inhibiting expression of epsins in diabetes protects VEGFR3 against degradation and ameliorates diabetes-triggered inhibition of lymphangiogenesis, thereby providing a novel potential therapeutic strategy to treat diabetic complications.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Diabetes Mellitus Experimental/metabolismo , Linfangiogênese/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteína Tirosina Quinase CSK , Diabetes Mellitus Experimental/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
19.
Dis Model Mech ; 10(11): 1273-1287, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29125824

RESUMO

The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities.


Assuntos
Valvas Cardíacas/fisiologia , Animais , Predisposição Genética para Doença , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Humanos , Modelos Biológicos , Estresse Mecânico
20.
BMB Rep ; 49(8): 403-4, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27418286

RESUMO

The Wnt/ß-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/ß-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/ß-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). ß-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of ß-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/ß-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development. [BMB Reports 2016; 49(8): 403-404].


Assuntos
Linfangiogênese , Mecanotransdução Celular , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Células Endoteliais/metabolismo , Humanos , Sistema Linfático/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA