Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6660): 851-857, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616368

RESUMO

The intestinal microbiota regulates mammalian lipid absorption, metabolism, and storage. We report that the microbiota reprograms intestinal lipid metabolism in mice by repressing the expression of long noncoding RNA (lncRNA) Snhg9 (small nucleolar RNA host gene 9) in small intestinal epithelial cells. Snhg9 suppressed the activity of peroxisome proliferator-activated receptor γ (PPARγ)-a central regulator of lipid metabolism-by dissociating the PPARγ inhibitor sirtuin 1 from cell cycle and apoptosis protein 2 (CCAR2). Forced expression of Snhg9 in the intestinal epithelium of conventional mice impaired lipid absorption, reduced body fat, and protected against diet-induced obesity. The microbiota repressed Snhg9 expression through an immune relay encompassing myeloid cells and group 3 innate lymphoid cells. Our findings thus identify an unanticipated role for a lncRNA in microbial control of host metabolism.


Assuntos
Microbioma Gastrointestinal , Intestinos , Metabolismo dos Lipídeos , PPAR gama , RNA Longo não Codificante , Sirtuína 1 , Animais , Camundongos , Imunidade Inata , Metabolismo dos Lipídeos/genética , Linfócitos/imunologia , PPAR gama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sirtuína 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Células Mieloides/imunologia , Intestinos/metabolismo , Intestinos/microbiologia , Tecido Adiposo/microbiologia , Humanos
2.
Elife ; 122023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159507

RESUMO

Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.


Assuntos
Complemento C1q , Sistema Nervoso Entérico , Camundongos , Animais , Complemento C1q/metabolismo , Motilidade Gastrointestinal/fisiologia , Macrófagos/metabolismo , Trato Gastrointestinal
3.
Nat Mater ; 21(4): 471-478, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857911

RESUMO

Engineered living materials could have the capacity to self-repair and self-replicate, sense local and distant disturbances in their environment, and respond with functionalities for reporting, actuation or remediation. However, few engineered living materials are capable of both responsivity and use in macroscopic structures. Here we describe the development, characterization and engineering of a fungal-bacterial biocomposite grown on lignocellulosic feedstocks that can form mouldable, foldable and regenerative living structures. We have developed strategies to make human-scale biocomposite structures using mould-based and origami-inspired growth and assembly paradigms. Microbiome profiling of the biocomposite over multiple generations enabled the identification of a dominant bacterial component, Pantoea agglomerans, which was further isolated and developed into a new chassis. We introduced engineered P. agglomerans into native feedstocks to yield living blocks with new biosynthetic and sensing-reporting capabilities. Bioprospecting the native microbiota to develop engineerable chassis constitutes an important strategy to facilitate the development of living biomaterials with new properties and functionalities.


Assuntos
Pantoea , Materiais Biocompatíveis , Humanos , Pantoea/química , Pantoea/genética
4.
Seizure ; 66: 61-69, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30802844

RESUMO

OBJECTIVE: This study characterizes the current capabilities of seizure detection device (SDD) technology and evaluates the fitness of these devices for use in anti-seizure medication (ASM) clinical trials. METHODS: Through a systematic literature review, 36 wireless SDDs featured in published device validation studies were identified. Each device's seizure detection capabilities that addressed ASM clinical trial primary endpoint measurement needs were cataloged. RESULTS: The two most common types of seizures targeted by ASMs in clinical trials are generalized tonic-clonic (GTC) seizures and focal with impaired awareness (FIA) seizures. The Brain Sentinel SPEAC achieved the highest performance for the detection of GTC seizures (F1-score = 0.95). A non-commercial wireless EEG device achieved the highest performance for the detection of FIA seizures (F1-score = 0.88). DISCUSSION: A preliminary assessment of device capabilities for measuring selected ASM clinical trial secondary endpoints was performed. The need to address key limitations in validation studies is highlighted in order to support future assessments of SDD fitness for ASM clinical trial use. In tandem, a stepwise framework to streamline device testing is put forth. These suggestions provide a starting point for establishing SDD reporting requirements before device integration into ASM clinical trials.


Assuntos
Anticonvulsivantes/uso terapêutico , Ensaios Clínicos como Assunto/instrumentação , Equipamentos e Provisões , Avaliação de Resultados em Cuidados de Saúde , Convulsões/diagnóstico , Convulsões/tratamento farmacológico , Eletroencefalografia , Humanos , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA