Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Biomed Opt Express ; 15(4): 2152-2174, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633063

RESUMO

Blood flow index (BFI) is an optically accessible parameter, with unit distance-squared-over-time, that is widely used as a proxy for tissue perfusion. BFI is defined as the dynamic scattering probability (i.e. the ratio of dynamic to overall reduced scattering coefficients) times an effective Brownian diffusion coefficient that describes red blood cell (RBC) motion. Here, using a wavelength division multiplexed, time-of-flight- (TOF) - resolved iNIRS system, we obtain TOF-resolved field autocorrelations at 773 nm and 855 nm via the same source and collector. We measure the human forearm, comprising biological tissues with mixed static and dynamic scattering, as well as a purely dynamic scattering phantom. Our primary finding is that forearm BFI increases from 773 nm to 855 nm, though the magnitude of this increase varies across subjects (23% ± 19% for N = 3). However, BFI is wavelength-independent in the purely dynamic scattering phantom. From these data, we infer that the wavelength-dependence of BFI arises from the wavelength-dependence of the dynamic scattering probability. This inference is further supported by RBC scattering literature. Our secondary finding is that the higher-order cumulant terms of the mean squared displacement (MSD) of RBCs are significant, but decrease with wavelength. Thus, laser speckle and related modalities should exercise caution when interpreting field autocorrelations.

2.
Biomed Opt Express ; 15(4): 2110-2113, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633102

RESUMO

A feature issue is being presented by a team of guest editors containing papers based on contributed submissions including studies presented at Optics and the Brain, held April 24-27, 2023 as part of Optica Biophotonics Congress: Optics in the Life Sciences, in Vancouver, Canada.

3.
Opt Lett ; 48(22): 6056-6059, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966788

RESUMO

Dynamic multiple light scattering (DMLS) has found numerous applications, including soft matter physics and biomedical optics. Yet biological tissues may have complex internal geometries, presenting a challenge for noninvasive measurements. Deciphering laminar dynamics is crucial to accurately interpret tissue or organ physiology. Seminal DMLS work noted that one can probe deeper layers indirectly by analyzing light fluctuations on shorter time scales. Recent technologies have enabled probing deeper layers directly by analyzing fluctuations at longer path lengths. The following question arises: are the indirect and direct approaches synergistic or redundant? Here, by adding an optical switch to path-length-filtered interferometric diffusing wave spectroscopy, we experimentally address this question in the context of a forearm occlusion study. We find that both approaches afford better distinction of light scattering dynamics in layered tissues than either approach alone. This motivates further development of methods that integrate both decorrelation time scale and light path length to probe layered tissues.


Assuntos
Interferometria , Óptica e Fotônica , Análise Espectral , Difusão
4.
Opt Lett ; 48(18): 4737-4740, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707890

RESUMO

We demonstrate superluminescent diodes (SLDs) for visible light optical coherence tomography (OCT) of the human retina. SLDs are less costly than supercontinuum sources and have lower intrinsic excess noise, enabling imaging closer to the shot noise limit. While single SLDs are not broadband, they provide power concentrated at specific wavelengths relevant to retinal function. As a new, to the best of our knowledge, application, we image human macular pigments (MPs), which are thought to both aid vision and protect against advanced age-related macular degeneration. Using the unique depth-resolved capabilities of OCT, we localize MPs in depth to Henle's fibers beneath the foveal pit in the living human retina. Our approach reduces the cost of visible light OCT to nearly that of near-infrared (NIR) OCT while also providing information about clinically relevant MPs which cannot be measured in the NIR.


Assuntos
Pigmento Macular , Tomografia de Coerência Óptica , Humanos , Luz , Retina/diagnóstico por imagem
5.
Ophthalmol Sci ; 3(4): 100321, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37388138

RESUMO

Purpose: Although the outer nuclear layer (ONL) and outer plexiform layer (OPL) each exhibit a complex internal organization, near-infrared OCT depicts both as monolithic bands. Here, using visible light OCT in the C57BL/6J mouse retina, sublaminar age-related changes in photoreceptor features were imaged and interpreted. These features were (1) oscillations in reflectivity, or striations, in the ONL and (2) a moderately reflective subband in the OPL. Design: Cross-sectional study. Participants: Pigmented mice (C57BL/6J, n = 14). Methods: A 1.0-µm axial resolution visible light spectral/Fourier domain OCT system was used for in vivo retinal imaging. Light and electron microscopy were performed ex vivo. Linear mixed effects models or regression were employed for statistical analysis. Main Outcome Measures: Comparison of OCT subbands with corresponding histological features, as well as quantification of subband thickness and reflectivity. Results: Corresponding histological comparisons confirm that striations in the ONL arise from the rowlike arrangement of photoreceptor nuclei and reveal that the moderately reflective OPL subband arises from rod spherules. Compression of outer ONL striations with age suggests changes in soma organization. Thinning of the moderately reflective OPL subband with age supports a reduction of synapses in the OPL. Critically, the ONL somas are tightly correlated with the purported spherule layer but not with the rest of the OPL. Conclusions: Visible light OCT imaging of the mouse OPL resolves postsynaptic and synaptic differences. Visible light OCT can study rod photoreceptor changes from the soma to the synapse in the living mouse retina. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

6.
Optica ; 10(1): 42-52, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37275218

RESUMO

Diffuse optics (DO) is a light-based technique used to study the human brain, but it suffers from low brain specificity. Interferometric diffuse optics (iDO) promises to improve the quantitative accuracy and depth specificity of DO, and particularly, coherent light fluctuations (CLFs) arising from blood flow. iDO techniques have alternatively achieved either time-of-flight (TOF) discrimination or highly parallel detection, but not both at once. Here, we break this barrier with a single iDO instrument. Specifically, we show that rapid tuning of a temporally coherent laser during the sensor integration time increases the effective linewidth seen by a highly parallel interferometer. Using this concept to create a continuously variable and user-specified TOF filter, we demonstrate a solution to the canonical problem of DO, measuring optical properties. Then, with a deep TOF filter, we reduce scalp sensitivity of CLFs by 2.7 times at 1 cm source-collector separation. With this unique combination of desirable features, i.e., TOF-discrimination, spatial localization, and highly parallel CLF detection, we perform multiparametric imaging of light intensities and CLFs via the human forehead.

7.
Neurophotonics ; 10(1): 013502, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284601

RESUMO

The field of diffuse optics has provided a rich set of neurophotonic tools to measure the human brain noninvasively. Interferometric detection is a recent, exciting methodological development in this field. The approach is especially promising for the measurement of diffuse fluctuation signals related to blood flow. Benefitting from inexpensive sensor arrays, the interferometric approach has already dramatically improved throughput, enabling the measurement of brain blood flow faster and deeper. The interferometric approach can also achieve time-of-flight resolution, improving the accuracy of acquired signals. We provide a historical perspective and summary of recent work in the nascent area of interferometric diffuse optics. We predict that the convergence of interferometric technology with existing economies of scale will propel many advances in the years to come.

8.
Neurophotonics ; 9(Suppl 2): S24001, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36052058

RESUMO

This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.

9.
Transl Vis Sci Technol ; 11(9): 3, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053140

RESUMO

Purpose: We employ visible light optical coherence tomography (OCT) to investigate the relationship between the myoid, ellipsoid, and band 2 in the living human retina. Rather than refute existing theories, we aim to reveal new bands and better delineate the structures at hand. Methods: An upgraded spectral/Fourier domain visible light OCT prototype, with 1.0-µm axial resolution, imaged 13 eyes of 13 young adult human subjects (23-40 years old) without a history of ocular pathology. The external limiting membrane (band 1) and band 2 edges were segmented. Reflectivity was examined along the inner segment (IS), defined as extending from band 1 to the band 2 center, and within band 2 itself. Results: Images highlight a nearly continuously resolved extrafoveal internal limiting membrane, the peripheral single-cell thick ganglion cell layer, and the peripheral photoreceptor axonal fiber layer, a peripheral division of band 2 into bands 2a and 2b, and a reflectivity-based division of the IS into "m" and "e" zones. Discussion: Topography and transverse intensity variations of the outermost band 2b suggest an association with rods. The "m" and "e" zone border is consistent with the myoid-ellipsoid boundary, even recapitulating the well-documented distribution of mitochondria throughout the IS at the foveal center. Theories of outer retinal reflectivity in OCT must adequately explain these observations. Translational Relevance: Findings support that band 2 does partially overlap with the ellipsoid in transversally averaged OCT images due to photoreceptor IS length dispersion but argue that the inner ellipsoid must be inner to band 2, as suggested by prior quantitative measurements.


Assuntos
Retina , Tomografia de Coerência Óptica , Adulto , Humanos , Luz , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Adulto Jovem
10.
Invest Ophthalmol Vis Sci ; 63(9): 10, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35943734

RESUMO

Purpose: We employed in vivo, 1.0-µm axial resolution visible-light optical coherence tomography (OCT) and ex vivo electron microscopy (EM) to investigate three subcellular features in the mouse outer retina: reflectivity oscillations inner to band 1 (study 1); hyperreflective band 2, attributed to the ellipsoid zone or inner segment/outer segment (IS/OS) junction (study 2); and the hyperreflective retinal pigment epithelium (RPE) within band 4 (study 3). Methods: Pigmented (C57BL/6J, n = 10) and albino (BALB/cJ, n = 3) mice were imaged in vivo. Enucleated eyes were processed for light and electron microscopy. Using well-accepted reference surfaces, we compared micrometer-scale axial reflectivity of visible-light OCT with subcellular organization, as revealed by 9449 annotated EM organelles and features across four pigmented eyes. Results: In study 1, outer nuclear layer reflectivity peaks coincided with valleys in heterochromatin clump density (-0.34 ± 2.27 µm limits of agreement [LoA]). In study 2, band 2 depth on OCT and IS/OS junction depth on EM agreed (-0.57 ± 0.76 µm LoA), with both having similar distributions. In study 3, RPE electron dense organelle distribution did not agree with reflectivity in C57BL/6J mice, with OCT measures of RPE thickness exceeding those of EM (2.09 ± 0.89 µm LoA). Finally, RPE thickness increased with age in pigmented mice (slope = 0.056 µm/mo; P = 6.8 × 10-7). Conclusions: Visible-light OCT bands arise from subcellular organization, enabling new measurements in mice. Quantitative OCT-EM comparisons may be confounded by hydration level, particularly in the OS and RPE. Caution is warranted in generalizing results to other species.


Assuntos
Epitélio Pigmentado da Retina , Tomografia de Coerência Óptica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
11.
Opt Lett ; 47(1): 110-113, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951892

RESUMO

In diffuse optics, quantitative assessment of the human brain is confounded by the skull and scalp. To better understand these superficial tissues, we advance interferometric near-infrared spectroscopy (iNIRS) to form images of the human superficial forehead blood flow index (BFI). We present a null source-collector (S-C) polarization splitting approach that enables galvanometer scanning and eliminates unwanted backscattered light. Images show an order-of-magnitude heterogeneity in superficial dynamics, implying an order-of-magnitude heterogeneity in brain specificity, depending on forehead location. Along the time-of-flight dimension, autocorrelation decay rates support a three-layer model with increasing BFI from the skull to the scalp to the brain. By accurately characterizing superficial tissues, this approach can help improve specificity for the human brain.


Assuntos
Interferometria , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Hemodinâmica , Humanos , Crânio
12.
Digit J Ophthalmol ; 28(4): 100-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36660188

RESUMO

Purpose: To determine whether intereye asymmetry of a three-dimensional neuroretinal rim parameter, the minimum distance band, is useful in differentiating normal eyes from those with open-angle glaucoma. Materials and Methods: This is a cross-sectional study of 28 normal subjects and 33 glaucoma subjects. Subjects underwent spectral domain optical coherence tomography imaging of both eyes. From high-density raster scans of the optic nerve head, a custom-designed segmentation algorithm calculated mean minimum distance band neuroretinal rim thickness globally, for four quadrants, and for four sectors. Intereye minimum distance band thickness asymmetry was calculated as the absolute difference in minimum distance band thickness values between the right and left eyes. Results: Increasing global minimum distance band thickness asymmetry was not associated with increasing age or increasing refractive error asymmetry. Glaucoma patients had thinner mean neuroretinal rim thickness values compared to normal patients (209.0 µm vs 306.0 µm [P < 0.001]). Glaucoma subjects had greater intereye thickness asymmetry compared to normal subjects for the global region (51.9 µm vs 17.6 µm [P < 0.001]) as well as for all quadrants and all sectors. For detecting glaucoma, a thickness asymmetry value >28.3 µm in the inferior quadrant yielded the greatest sum of sensitivity (87.9%) and specificity (75.0%). Globally, thickness asymmetry >30.7 µm yielded the greatest sum of sensitivity (66.7%) and specificity (89.3%). Conclusions: This study indicates that intereye neuroretinal rim minimum distance band asymmetry measurements, using high-density spectral domain optical coherence tomography volume scans, may be an objective and quantitative tool for assessing patients suspected of open-angle glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Disco Óptico , Humanos , Disco Óptico/diagnóstico por imagem , Glaucoma de Ângulo Aberto/diagnóstico , Tomografia de Coerência Óptica/métodos , Estudos Transversais , Pressão Intraocular , Células Ganglionares da Retina , Glaucoma/diagnóstico
13.
Nat Commun ; 12(1): 7288, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911947

RESUMO

Identifying risk factors for impaired oral rotavirus vaccine (ORV) efficacy in low-income countries may lead to improvements in vaccine design and delivery. In this prospective cohort study, we measure maternal rotavirus antibodies, environmental enteric dysfunction (EED), and bacterial gut microbiota development among infants receiving two doses of Rotarix in India (n = 307), Malawi (n = 119), and the UK (n = 60), using standardised methods across cohorts. We observe ORV shedding and seroconversion rates to be significantly lower in Malawi and India than the UK. Maternal rotavirus-specific antibodies in serum and breastmilk are negatively correlated with ORV response in India and Malawi, mediated partly by a reduction in ORV shedding. In the UK, ORV shedding is not inhibited despite comparable maternal antibody levels to the other cohorts. In both India and Malawi, increased microbiota diversity is negatively correlated with ORV immunogenicity, suggesting that high early-life microbial exposure may contribute to impaired vaccine efficacy.


Assuntos
Microbioma Gastrointestinal , Doenças do Recém-Nascido/prevenção & controle , Infecções por Rotavirus/microbiologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/administração & dosagem , Rotavirus/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Humanos , Imunidade Materno-Adquirida , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Índia , Lactente , Recém-Nascido , Doenças do Recém-Nascido/sangue , Doenças do Recém-Nascido/microbiologia , Doenças do Recém-Nascido/virologia , Malaui , Masculino , Leite Humano/química , Leite Humano/imunologia , Gravidez , Estudos Prospectivos , Rotavirus/genética , Rotavirus/fisiologia , Infecções por Rotavirus/sangue , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus/imunologia , Reino Unido , Eficácia de Vacinas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Eliminação de Partículas Virais
14.
Opt Lett ; 46(18): 4498-4501, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525031

RESUMO

We present multi-exposure interferometric diffusing wave spectroscopy (MiDWS), which measures brain blood flow index (BFI) continuously and non-invasively. MiDWS employs interferometry to detect low light levels, probing the optical field autocorrelation indirectly by varying the sensor exposure time. Here MiDWS is compared with conventional interferometric diffusing wave spectroscopy and speckle contrast optical spectroscopy in phantoms. Notably, the MiDWS approach enables the use of low frame rate, two-dimensional complementary metal-oxide semiconductor cameras in a short exposure time regime, where detector noise greatly exceeds the sample photon count. Finally, we show that MiDWS can monitor the BFI simultaneously at two source-collector separations (1 and 3 cm) on the adult human head on a single camera, enabling the use of superficial signal regression techniques to improve brain specificity.


Assuntos
Interferometria , Fótons , Circulação Cerebrovascular , Humanos , Imagens de Fantasmas , Análise Espectral
15.
Light Sci Appl ; 10(1): 145, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262015

RESUMO

In vivo, minimally invasive microscopy in deep cortical and sub-cortical regions of the mouse brain has been challenging. To address this challenge, we present an in vivo high numerical aperture optical coherence microscopy (OCM) approach that fully utilizes the water absorption window around 1700 nm, where ballistic attenuation in the brain is minimized. Key issues, including detector noise, excess light source noise, chromatic dispersion, and the resolution-speckle tradeoff, are analyzed and optimized. Imaging through a thinned-skull preparation that preserves intracranial space, we present volumetric imaging of cytoarchitecture and myeloarchitecture across the entire depth of the mouse neocortex, and some sub-cortical regions. In an Alzheimer's disease model, we report that findings in superficial and deep cortical layers diverge, highlighting the importance of deep optical biopsy. Compared to other microscopic techniques, our 1700 nm OCM approach achieves a unique combination of intrinsic contrast, minimal invasiveness, and high resolution for deep brain imaging.

16.
Front Cell Neurosci ; 15: 655096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994948

RESUMO

From the bipolar cells to higher brain visual centers, signals in the vertebrate visual system are transmitted along parallel on and off pathways. These two pathways are spatially segregated along the depth axis of the retina. Yet, to our knowledge, there is no way to directly assess this anatomical stratification in vivo. Here, employing ultrahigh resolution visible light Optical Coherence Tomography (OCT) imaging in humans, we report a stereotyped reflectivity pattern of the inner plexiform layer (IPL) that parallels IPL stratification. We characterize the topography of this reflectivity pattern non-invasively in a cohort of normal, young adult human subjects. This proposed correlate of IPL stratification is accessible through non-invasive ocular imaging in living humans. Topographic variations should be carefully considered when designing studies in development or diseases of the visual system.

17.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33980479

RESUMO

Cerebral blood flow (CBF) is essential for brain function, and CBF-related signals can inform us about brain activity. Yet currently, high-end medical instrumentation is needed to perform a CBF measurement in adult humans. Here, we describe functional interferometric diffusing wave spectroscopy (fiDWS), which introduces and collects near-infrared light via the scalp, using inexpensive detector arrays to rapidly monitor coherent light fluctuations that encode brain blood flow index (BFI), a surrogate for CBF. Compared to other functional optical approaches, fiDWS measures BFI faster and deeper while also providing continuous wave absorption signals. Achieving clear pulsatile BFI waveforms at source-collector separations of 3.5 cm, we confirm that optical BFI, not absorption, shows a graded hypercapnic response consistent with human cerebrovascular physiology, and that BFI has a better contrast-to-noise ratio than absorption during brain activation. By providing high-throughput measurements of optical BFI at low cost, fiDWS will expand access to CBF.

18.
Transl Vis Sci Technol ; 10(3): 30, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34003965

RESUMO

Purpose: To use visible light optical coherence tomography (OCT) to investigate subcellular reflectivity contributions to the outermost (4th) of the retinal hyperreflective bands visualized by current clinical near-infrared (NIR) OCT. Methods: Visible light OCT, with 1.0 µm axial resolution, was performed in 28 eyes of 19 human subjects (21-57 years old) without history of ocular pathology. Two foveal and three extrafoveal hyperreflective zones were consistently depicted within band 4 in all eyes. The two outermost hyperreflective bands, occasionally visualized by NIR OCT, were presumed to be the retinal pigment epithelium (RPE) and Bruch's membrane (BM). RPE thickness, BM thickness, and RPE interior reflectivity were quantified topographically across the macula. Results: A method for correcting RPE multiple scattering tails was found to both improve the Gaussian goodness-of-fit for the BM intensity profile and reduce the coefficient of variation of BM thickness in vivo. No major topographical differences in macular BM thickness were noted. RPE thickness decreased with increasing eccentricity. Visible light OCT signal intensity in the RPE was weighted to the apical side and attenuated more across the RPE in the fovea than peripherally. Conclusions: Morphometry of the presumed RPE and BM bands is consistent with known anatomy. Weighting of RPE reflectivity toward the apical side suggests that melanosomes are the predominant contributors to RPE backscattering and signal attenuation in young eyes. Translational Relevance: By enabling morphometric analysis of the RPE and BM, visible light OCT deciphers the main reflectivity contributions to outer retinal band 4, commonly visualized by commercial OCT systems.


Assuntos
Lâmina Basilar da Corioide , Tomografia de Coerência Óptica , Adulto , Fóvea Central/diagnóstico por imagem , Humanos , Luz , Pessoa de Meia-Idade , Epitélio Pigmentado da Retina , Adulto Jovem
19.
Prog Retin Eye Res ; 80: 100875, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659431

RESUMO

Glaucoma and other optic neuropathies are characterized by progressive dysfunction and loss of retinal ganglion cells and their axons. Given the high prevalence of glaucoma-related blindness and the availability of treatment options, improving the diagnosis and precise monitoring of progression in these conditions is paramount. Here we review recent progress in the development of novel biomarkers for glaucoma in the context of disease pathophysiology and we propose future steps for the field, including integration of exploratory biomarker outcomes into prospective therapeutic trials. We anticipate that, when validated, some of the novel glaucoma biomarkers discussed here will prove useful for clinical diagnosis and prediction of progression, as well as monitoring of clinical responses to standard and investigational therapies.


Assuntos
Biomarcadores/metabolismo , Glaucoma/metabolismo , Doenças do Nervo Óptico/metabolismo , Animais , Axônios/patologia , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Humanos , Doenças do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/patologia
20.
IEEE Trans Biomed Eng ; 68(1): 256-266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32746021

RESUMO

OBJECTIVE: Current intrapartum fetal monitoring technology is unable to provide physicians with an objective metric of fetal well-being, leading to degraded patient outcomes and increased litigation costs. Fetal oxygen saturation (SpO2) is a more suitable measure of fetal distress, but the inaccessibility of the fetus prior to birth makes this impossible to capture through current means. In this paper, we present a fully non-invasive, transabdominal fetal oximetry (TFO) system that provides in utero measures of fetal SpO2. METHODS: TFO is performed by placing a reflectance-mode optode on the maternal abdomen and sending photons into the body to investigate the underlying fetal tissue. The proposed TFO system design consists of a multi-detector optode, an embedded optode control system, and custom user-interface software. To evaluate the developed TFO system, we utilized an in utero hypoxic fetal lamb model and performed controlled desaturation experiments while capturing gold standard arterial blood gases (SaO2). RESULTS: Various degrees of fetal hypoxia were induced with true SaO2 values ranging between 10.5% and 66%. The non-invasive TFO system was able to accurately measure these fetal SpO2 values, supported by a root mean-squared error of 6.37% and strong measures of agreement with the gold standard. CONCLUSION: The results support the efficacy of the presented TFO system to non-invasively measure a wide-range of fetal SpO2 values and identify critical levels of fetal hypoxia. SIGNIFICANCE: TFO has the potential to improve fetal outcomes by providing obstetricians with a non-invasive measure of fetal oxygen saturation prior to delivery.


Assuntos
Oximetria , Oxigênio , Animais , Feto , Humanos , Hipóxia , Monitorização Fisiológica , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA